NASA Mars mission set for launch

A SPACECRAFT that will examine the upper atmosphere of Mars in unprecedented detail is undergoing final preparations for a scheduled launch at 5:28am Sydney time (1:28 p.m. EST Monday, Nov. 18 in the USA) from the Cape Canaveral Air Force Station in Florida.

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission will examine specific processes on Mars that led to the loss of much of its atmosphere. Data and analysis could tell planetary scientists the history of climate change on the Red Planet and provide further information on the history of planetary habitability.

“The MAVEN mission is a significant step toward unravelling the planetary puzzle about Mars’ past and present environments,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “The knowledge we gain will build on past and current missions examining Mars and will help inform future missions to send humans to Mars.”

Artist's concept of MAVEN

MAVEN (artist’s concept) will arrive at Mars in September 2014 to begin a detailed study of the planet’s atmosphere and its interaction with the solar wind. Image Credit: NASA Goddard Space Flight Centre.

2.5-tonne spacecraft will launch aboard a United Launch Alliance Atlas V 401 rocket on a 10-month journey to Mars. After arriving in September 2014, MAVEN will settle into its elliptical science orbit.

Over the course of its one-Earth-year primary mission, MAVEN will observe all of Mars’ latitudes. Orbital altitudes will range from 150 kilometres to more than 6,100 kilometres. During the primary mission, MAVEN will execute five deep dip manoeuvres, descending to an altitude of 125 kilometres, which marks the lower boundary of the planet’s upper atmosphere.

MAVEN will carry three instrument suites. The Particles and Fields Package contains six instruments to characterise the solar wind and the ionosphere of Mars. The Remote Sensing Package will determine global characteristics of the upper atmosphere and ionosphere. And the Neutral Gas and Ion Mass Spectrometer will measure the composition of Mars’ upper atmosphere.

More information: MAVEN mission

Adapted from information issued by NASA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Gallery: Supernova remnant B0049-73.6

THE PRECISE DETAILS of how massive stars explode at the end of their lives – a process known as a supernova – remains one of the biggest questions in astrophysics.

Located in the neighbouring galaxy of the Small Magellanic Cloud, this false-colour image shows the aftermath of such a supernova – an enormous, expanding debris cloud called a supernova remnant.

SNR B0049-73.6

Chandra X-ray Observatory image of supernova remnant SNR B0049-73.6, the aftermath of a stellar explosion. Image credit: X-ray: NASA / CXC / Drew Univ. / S.Hendrick et al, Infrared: 2MASS / Umass / IPAC-Caltech / NASA / NSF

Known only by its catalogue number, SNR B0049-73.6, it provides astronomers with an excellent example with which to study the after effects of a supernova. Chandra observations of the motions and composition of the debris from the explosion support the view that the explosion was produced by the collapse of the core of a star.

In this image, X-rays from NASA’s Chandra X-ray Observatory satellite (purple) are combined with infrared data from the 2MASS survey (red, green, and blue).

More information and downloadable wallpapers images: nasa.gov/mission_pages/chandra/multimedia/small-magellanic-cloud-supernova-remnant.html

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Gallery: The ‘Fireworks Galaxy’

NGC 6946 IS A MEDIUM-SIZED, face-on spiral galaxy located about 22 million light years away from Earth. In the past century, eight supernovae have been observed to explode in the arms of this galaxy. Chandra space telescope observations (coloured purple in this iamge) have, in fact, revealed three of the oldest supernovae ever detected at X-ray wavelengths, giving more credence to its nickname of the ‘Fireworks Galaxy.’ This composite image also includes optical data from the ground-based Gemini Observatory.

NGC 6949

NGC 6949, also known as the ‘Fireworks Galaxy’. Image credit: X-ray: NASA / CXC / MSSL / R.Soria et al, Optical: AURA / Gemini Obs

More information and downloadable wallpaper images: nasa.gov/mission_pages/chandra/multimedia/fireworks-galaxy-ngc6946.html

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Olympic torch to go on a spacewalk

TWO RUSSIAN COSMONAUTS will carry the Olympic torch when they venture outside the International Space Station Saturday, November 9, for a six-hour spacewalk to perform maintenance work on the orbiting laboratory.

NASA Television will provide live coverage of the spacewalk beginning at 1:00am Australian Eastern Summer Time.

Expedition 37 Flight Engineers Oleg Kotov and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) will open the hatch to the Pirs docking compartment airlock at 1:30am and float outside for a brief photo opportunity with the unlit torch. They then will stow it back inside the airlock before they begin their chores 420 kilometres above Earth.

Expedition 38 flight members holding the Olympic torch

Expedition 38 Flight Engineer Koichi Wakata of the Japan Aerospace Exploration Agency, left, Soyuz Commander Mikhail Tyurin of Roscosmos, and Flight Engineer Rick Mastracchio of NASA, hold an Olympic torch that will be flown with them to the International Space Station, during a press conference held Wednesday, November 6, at the Cosmonaut Hotel in Baikonur, Kazakhstan.

The torch, an icon of international co-operation through sports competition, arrived at the space station Thursday aboard a Soyuz spacecraft carrying three crew members Mikhail Tyurin of Roscosmos, Rick Mastracchio of NASA and Koichi Wakata of the Japan Aerospace Exploration Agency. It will return to Earth on Sunday, November 10, aboard another Soyuz spacecraft vehicle along with crew members Fyodor Yurchikhin of Roscosmos, Karen Nyberg of NASA, and Luca Parmitano of the European Space Agency.

The spacewalk is a high-flying extension of a relay that began in Olympia, Greece, in October. The relay will culminate with the torch being used to light the Olympic flame at the February 7 opening ceremonies of the 2014 Winter Olympic Games in Sochi, Russia.

This is not the first time that an Olympic torch has been carried into space, but it will be the first time in which one has been taken on a spacewalk.

After the photo opportunity, Kotov and Ryazanskiy will prepare a pointing platform on the hull of the station’s Zvezda service module for the installation of a high resolution camera system in December, relocate of a foot restraint for use on future spacewalks and deactivate an experiment package.

The spacewalk will be the 174th in support of space station assembly and maintenance, the fourth in Kotov’s career and the first for Ryazanskiy. This will be the eighth spacewalk conducted at the station this year. In December, Tyurin will accompany Kotov on his fifth spacewalk.

All the times of International Space Station programming, key Soyuz event coverage and other NASA Television programming can be found at: nasa.gov/stationnews

The ‘missing link’ pulsar

AN INTERNATIONAL TEAM of astronomers using CSIRO radio telescopes in Australia and other ground and space-based instruments, has caught a small star called a pulsar undergoing a radical transformation, described in a paper in the journal Nature.

“For the first time we see both X-rays and extremely fast radio pulses from the one pulsar. This is the first direct evidence of a pulsar changing from one kind of object into another – like a caterpillar turning into a butterfly,” said Dr Simon Johnston, Head of Astrophysics at CSIRO’s Astronomy and Space Science division.

The pulsar and its companion star

The pulsar and its companion star. The ageing pulsar rotates slower and slower, then matter from its companion spins it up again. As the pulsar is spun up, it alternates between emitting X-rays (white) and radio waves (pink). Credit: ESA

The cosmic drama is being played out 18,000 light-years away, in a small cluster of stars (called M28) in the constellation of Sagittarius.

The pulsar (called PSR J1824-2452I) has a tiny companion star, with about a fifth the mass of the Sun. Although small, the companion is fierce, pounding the pulsar with streams of matter.

Normally the pulsar shields itself from this onslaught, its magnetic field deflecting the matter stream into space.

But sometimes the stream swells to a flood, overwhelming the pulsar’s protective ‘force field.’ When the stream hits the pulsar’s surface its energy is released as blasts of X-rays.

Eventually the torrent slackens. Once again the pulsar’s magnetic field re-asserts itself and fends off the companion’s attacks.

“We’ve been fortunate enough to see all stages of this process, with a range of ground and space telescopes. We’ve been looking for such evidence for more than a decade,” said Dr Alessandro Papitto, the paper’s lead author. Dr Papitto is an astronomer of the Institute of Space Studies (ICE, CSIC-IEEC) of Barcelona, Spain.

‘Teenage’ behaviour

The pulsar and its companion form what is called a ‘low-mass X-ray binary’ system. In such a system, the matter transferred from the companion lights up the pulsar in X-rays and makes it spin faster and faster, until it becomes a ‘millisecond pulsar’ that spins at hundreds of times a second and emits radio waves. The process takes about a billion years, astronomers think.

In its current state the pulsar is exhibiting behaviour typical of both kinds of systems: millisecond X-ray pulses when the companion is flooding the pulsar with matter, and radio pulses when it is not.

“It’s like a teenager who switches between acting like a child and acting like an adult,” said Mr. John Sarkissian, who observed the system with CSIRO’s 64-m (210-ft) Parkes radio telescope in eastern Australia.

“Interestingly, the pulsar swings back and forth between its two states in just a matter of weeks.”

This video shows an artist’s impression of the pulsar and its companion star. Credit: ESA

A global effort

The pulsar was initially detected as an X-ray source with the INTEGRAL satellite. X-ray pulsations were seen with another satellite, ESA’s XMM-Newton; further observations were made with NASA’s Swift. NASA’s Chandra X-ray telescope got a precise position for the object.

Then, crucially, the object was checked against the pulsar catalogue generated by CSIRO’s Australia Telescope National Facility, and other pulsar observations. This established that it had already been identified as a radio pulsar.

The source was detected in the radio with CSIRO’s Australia Telescope Compact Array, and then re-observed with CSIRO’s Parkes radio telescope, NRAO’s Robert C. Byrd Green Bank Telescope in the USA, and the Westerbork Synthesis Radio Telescope in The Netherlands. Pulses were detected in a number of these later observations, showing that the pulsar had ‘revived’ as a normal radio pulsar only a couple of weeks after the last detection of the X-rays.

The astronomers involved in these investigations work at institutions in Australia, Canada, Germany Italy, The Netherlands, Spain, Switzerland, and the USA.

Adapted from information issued by CSIRO.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Galactic explosion betrays black hole

TWO MILLION YEARS AGO a supermassive black hole at the heart of our galaxy erupted in an explosion so immensely powerful that it lit up a cloud 200,000 light years away, a team of researchers led by the University of Sydney has revealed.

The finding is an exciting confirmation that black holes can ‘flicker’, moving from maximum power to switching off over, in cosmic terms, short periods of time.

An artist's conception of a black hole generating a jet

An artist’s conception of a black hole generating a jet. Two million years ago the supermassive black hole at the centre of our Galaxy was 100 million times more powerful than it is today. Credit: NASA / Dana Berry / SkyWorks Digital

“For 20 years astronomers have suspected that such a significant outburst occurred, but now we know when this sleeping dragon, four million times the mass of the Sun, awoke and breathed fire with 100 million times the power it has today,” said Professor Joss Bland-Hawthorn from the University’s School of Physics, and lead author of an article on the research to be published in The Astrophysical Journal.

Professor Bland-Hawthorn unveiled the research at the international Galaxy Zoo science conference on 24 September in Sydney.

“It’s been long suspected that our Galactic Centre might have sporadically flared up in the past. These observations are a highly suggestive ‘smoking gun’,” said Martin Rees, Astronomer Royal, who was one of the first scientists to suggest that massive black holes power quasars.

Fossil record

The evidence for the findings comes from a lacy filament of hydrogen gas called the Magellanic Stream. It trails behind our galaxy’s two small companion galaxies, the Large and Small Magellanic Clouds.

“Since 1996, we’ve been aware of an odd glow from the Magellanic Stream, but didn’t understand the cause. Then this year, it finally dawned on me that it must be the mark, the fossil record, of a huge outburst of energy from the supermassive black hole at the centre of our galaxy.”

The region around the galaxy’s supermassive black hole and the black hole is called Sagittarius A* (pronounced Sagittarius A-star). It emits radio, infrared, ultraviolet, x-ray and gamma ray emissions. Flickers of radiation rise up when small clouds of gas fall onto the hot cloud of matter that swirls around the black hole.

The video below show a computer simulation of a black hole in real time showing how gas falling in forms a disc that spins around the black hole. The friction causes the gas to become so hot it produces beams of UV radiation. Credit: McKinney (UMD), Tchekhovskoy (Princeton), Blandford (KIPAC), Kaehler (KIPAC)

In stark contrast to this current inactivity, evidence is emerging that there was a cataclysmic event in the past.

“In particular, in 2010 NASA’s Fermi satellite discovered two huge bubbles of hot gas billowing out from the centre of the galaxy, covering almost a quarter of the sky,” said Professor Bland-Hawthorn.

On-and-off black holes

Earlier this year, computer simulations of the Fermi bubbles made by the University of California Santa Cruz controversially suggested that they were caused by a colossal explosion from Sagittarius A* within the last few million years.

“When I saw this research I realised that this same event would also explain the mysterious glow that we see on the Magellanic Stream,” Professor Bland-Hawthorn said.

“Together with Dr Ralph Sutherland from Mount Stromlo Observatory and Dr Phil Maloney, from the University of Colorado, I calculated that to explain the glow it must have happened two million years ago because the energy release shown by the Santa Cruz group perfectly matched, to our delight, that from the Magellanic Stream.”

“The galaxy’s stars don’t produce enough ultraviolet to account for the glow, nor could they have in the past,” said Dr Maloney. “The Galactic Centre never formed stars at a high enough rate. There had to be another explanation.”

Professor Bland-Hawthorn said, “In fact the radiation from stars is one hundred times too little to account for the radiation now or at any time. The galaxy could never have produced enough UV radiation to account for it. So the only explanation was it had to be produced from our dragon, the massive black hole.”

“The realisation that these black holes can switch on and off within a million years, which given the universe is 14 billion years old means very rapidly, is a significant discovery.”

Will such a colossal explosion ever happen again?

“Yes, absolutely! There are lots of stars and gas clouds that could fall onto the hot disk around the black hole,” says Professor Bland-Hawthorn. “There’s a gas cloud called G2 that astronomers around the world are anticipating will fall onto the black hole early next year. It’s small, but we’re looking forward to the fireworks!

Professor Bland-Hawthorn is a Fellow of the Australian Astronomical Observatory.

Adapted from information issued by the University of Sydney.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Australian telescope to reveal early universe

SOLAR STORMS, SPACE JUNK and the formation of the Universe are about to be seen in an entirely new way with the start of operations this week of the $51 million Murchison Widefield Array (MWA) radio telescope.

The first of three international precursors facilities to the $2 billion Square Kilometre Array (SKA) telescope, the MWA is located in a remote pocket of outback Western Australia. It is the product of an international project led by Curtin University and was officially turned on this morning by Australia’s Science and Research Minister, Senator Kim Carr.

Using bleeding edge technology, the MWA will become an eye on the sky, acting as an early warning system that will potentially help to save billions of dollars as it steps up observations of the Sun to detect and monitor massive solar storms. It will also investigate a unique concept that will see stray FM radio signals used to track dangerous space debris.

Night-time photo of antennae of the MWA

Antennae of the MWA in outback Western Australia. Photo by John Goldsmith.

The MWA will also give scientists an unprecedented view into the first billion years of the Universe, enabling them to look far into the past by studying radio waves that are more than 13 billion years old. This major field of study has the potential to revolutionise the field of astrophysics.

“This collaboration between some of astronomy’s greatest minds has resulted in the creation of a groundbreaking facility,” Director of the MWA and Professor of Radio Astronomy at Curtin University, Steven Tingay said.

“Right now we are standing at the frontier of astronomical science. Each of these programs has the potential to change our understanding about the Universe.”

Nine major projects

The development and commissioning of the MWA, the most powerful low frequency radio telescope in the Southern Hemisphere, is the outcome of nearly nine years’ work by an international consortium of 13 institutions across four countries (Australia, USA, India and New Zealand).

The detailed observations will be used by scientists to hunt for explosive and variable objects in the Milky Way such as black holes and exploding stars, as well as to make the most comprehensive survey of the Southern Hemisphere sky at low radio frequencies.

From this week, regular data will be captured through the entirely static telescope, which spans a three-kilometre area at the CSIRO’s Murchison Radio-astronomy Observatory, future home to the SKA.

Close-up shot of some MWA antennae

The MWA comprises thousands of small antennae spread across a three-kilometre-wide section of the Western Australian desert.

The data will be processed 800 kilometres away at the $80 million Pawsey High Performance Computing Centre for SKA Science, in Perth, carried there on a link provided by the NBN and enabled by AARNet. The MWA will be the Pawsey Centre’s first large-scale customer.

Nine major research programs were announced at the launch, with more than 700 scientists across four continents awaiting the information the telescope has now begun to capture.

“Given the quality of the data obtained during the commissioning process and the vast areas of study that will be investigated, we are expecting to see preliminary results in as little as three months’ time,” Professor Tingay said.

“This is an exciting prospect for anyone who’s ever looked up at the sky and wondered how the Universe came to be.

“The MWA has and will continue to lift the bar even higher for the SKA.”

Forerunner to the SKA

Under Professor Tingay and fellow colleague Professor Peter Hall’s guidance, Curtin University has been awarded a $5 million grant by the Australian Government to participate in the SKA pre-construction program over the next three years, with the MWA’s unique insight being used to develop a low frequency radio telescope that is expected to be 50 times more sensitive.

The MWA has been supported by both State and Federal Government funding, with the majority of federal funding being administered by Astronomy Australia Limited.

The MWA project says it recognises the Wadjarri Yamatji people as the traditional owners of the site on which the MWA is built and thanks the Wadjarri Yamatji people for their support, as well as that of Astronomy Australia Limited.

The MWA launch event took place simultaneously at the Astronomical Society of Australia’s annual scientific meeting hosted at Monash University Melbourne and the Murchison Radio-astronomy Observatory in the Murchison, Western Australia.

More information: Murchison Widefield Array

Adapted from information issued by Curtin University.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Astronomers spy on galaxies in the raw

A CSIRO RADIO TELESCOPE has detected the raw material for making the first stars in galaxies that formed when the Universe was just three billion years old – less than a quarter of its current age. This opens the way to studying how these early galaxies make their first stars.

The telescope is CSIRO’s Australia Telescope Compact Array telescope near Narrabri, NSW. “It one of very few telescopes in the world that can do such difficult work, because it is both extremely sensitive and can receive radio waves of the right wavelengths,” says CSIRO astronomer Professor Ron Ekers.

The raw material for making stars is cold molecular hydrogen gas, called H2. It can’t be detected directly but its presence is revealed by a ‘tracer’ gas, carbon monoxide (CO), which emits radio waves.

The Spiderweb

In one project, astronomer Dr Bjorn Emonts (CSIRO Astronomy and Space Science) and his colleagues used the Compact Array to study a massive, distant conglomerate of star-forming ‘clumps’ or ‘proto-galaxies’ that are in the process of coming together as a single massive galaxy. This structure, called the Spiderweb, lies more than ten thousand million light-years away (at a redshift of 2.16).

The Spiderweb, imaged by the Hubble Space Telescope

MAIN IMAGE: The Spiderweb, imaged by the Hubble Space Telescope – a central galaxy (MRC 1138-262) surrounded by hundreds of other star-forming ‘clumps’. (Credit: NASA, ESA, George Miley and Roderik Overzier, Leiden Observatory.) INSET: In blue, the carbon monoxide gas detected in and around the Spiderweb. (Credit: B. Emonts et al, CSIRO/ATCA)

Dr Emonts’ team found that the Spiderweb contains at least sixty thousand million  times the mass of the Sun in molecular hydrogen gas, spread over a distance of almost a quarter of a million light-years. This must be the fuel for the star-formation that has been seen across the Spiderweb. “Indeed, it is enough to keep stars forming for at least another 40 million years,” says Dr Emonts.

Magnifying lens

In a second set of studies, Dr Manuel Aravena (European Southern Observatory) and colleagues measured CO, and therefore H2, in two very distant galaxies (at a redshift of 2.7).

The faint radio waves from these galaxies were amplified by the gravitational fields of other galaxies – ones that lie between us and the distant galaxies. This process, called gravitational lensing, “acts like a magnifying lens and allows us to see even more distant objects than the Spiderweb,” says Dr Aravena.

Dr Aravena’s team was able to measure the amount of H2 in both galaxies they studied. For one of the galaxies (called SPT-S 053816-5030.8), they could also use the radio emission to make an estimate of how rapidly the galaxy is forming stars – an estimate independent of the other ways astronomers measure this rate.

Antennae of CSIRO's Compact Array telescope

Dishes of the CSIRO’s Australia Telescope Compact Array near Narrabri in New South Wales. Photo: David Smyth

Upgraded telescope

The Compact Array’s ability to detect CO is due to an upgrade that has boosted its bandwidth – the amount of radio spectrum it can see at any one time – sixteen-fold (from 256 MHz to 4 GHz), and made it far more sensitive.

“The Compact Array complements the new ALMA telescope in Chile, which looks for the higher-frequency transitions of CO,” says Ron Ekers.

Adapted from information issued by CSIRO.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Close encounter could reveal planets

NASA’s Hubble Space Telescope will have two opportunities in the next few years to hunt for Earth-sized planets around the red dwarf star Proxima Centauri. The opportunities will occur in October 2014 and February 2016 when Proxima Centauri, the star nearest to our Solar System, passes in front of two other stars. Astronomers plotted Proxima Centauri’s precise path and predicted the two close encounters using data from Hubble.

Red dwarfs are the most common class of stars in our Milky Way galaxy; there are about 10 for every star like our Sun. Red dwarfs are less massive than other stars, and because lower-mass stars tend to have smaller planets, they are ideal places to go hunting for Earth-sized planets.

Previous attempts to detect planets circling Proxima Centauri have not been successful. But astronomers believe they may be able to detect smaller Earth-sized planets, if they exist, by looking for ‘microlensing’ effects during the two rare stellar alignments.

The projected motion of the red dwarf star Proxima Centauri

The projected motion of the red dwarf star Proxima Centauri (green line) over the next decade, as plotted from Hubble Space Telescope observations (the path appears looped due to Earth’s motion around the Sun. In 2014 and 2016 Proxima Centauri will pass almost in front of two background stars, affording astronomers a rare opportunity to study the warping of space by Proxima’s gravity. The amount of warping will be used to calculate a precise mass for Proxima Centauri and look for the gravitational footprint and any planets orbiting the star. Credit: NASA, ESA, K. Sahu and J. Anderson (STScI), H. Bond (STScI and Pennsylvania State University), M. Dominik (University of St. Andrews), and Digitized Sky Survey (STScI/AURA/UKSTU/AAO)

Microlensing occurs when a foreground star (the ‘lens’) passes close to our line of sight to a more distant background star (the ‘source’). The appearance of the background star may be distorted, brightened and multiplied depending on the alignment between the foreground lens and the background source.

These microlensing events, which range in duration from a few hours to a few days, will enable astronomers to precisely measure the mass of Proxima Centauri. Getting a precise determination of mass is critical to understanding a star’s temperature, diameter, intrinsic brightness and longevity.

Astronomers will measure the mass by examining images of each of the background stars to see how far the stars appear to be shifted from their real positions in the sky. The shifts will be the result of Proxima Centauri’s gravitational field warping space. The degree of shift can be used to measure Proxima Centauri’s mass; the greater the shift, the greater the mass. If the red dwarf has any planets, their gravitational fields will produce a second small position shift.

Diagram explaining microlensing as Proxima Centauri appears to pass close to a background star

The upcoming conjunction between the nearest star to our Sun, Proxima Centauri, and a distant background star. Proxima’s gravitational field distorts space like a funhouse mirror and bends the path of light from the background star. The result is that the apparent position of the star will shift slightly during Proxima Centauri’s passage, as seen in the upper right diagram. If an unseen planet is orbiting Proxima Centauri, the star’s apparent position will be further offset, as seen at lower right. Credit: A. Feild (STScI)

At a distance of 4.2 light-years from Earth, Proxima Centauri is just 0.2 light-year from the more distant binary star Alpha and Beta Centauri. These three stars are considered part of the triple-star system, though Proxima Centauri evolved in isolation from the two Sun-like companion stars.

Because Proxima Centauri is so close to Earth, the area of sky warped by its gravitation field is larger than for more distant stars. This makes it easier to look for shifts in apparent stellar position caused by this effect. However, the position shifts will be too small to be perceived by any but the most sensitive telescopes in space and on the ground. The European Space Agency’s Gaia space telescope (due for launch later this year) and the European Southern Observatory’s Very Large Telescope in Chile might be able to make measurements comparable to Hubble’s.

Adapted from information issued by NASA and the Space Telescope Science Institute.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Antares roars into space

Antares Rocket Launches

The Orbital Sciences Corporation Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. Image Credit: NASA/Bill Ingalls.

NASA COMMERCIAL space partner Orbital Sciences Corporation launched its Antares rocket on Sunday from the new Mid-Atlantic Regional Spaceport Pad-0A at the agency’s Wallops Flight Facility in Virginia, USA.

The test flight was the first launch from the pad at Wallops and was the first flight of Antares, which delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth orbit.

The test of the Antares launch system began with the rocket’s rollout and placement on the launch pad April 6, and culminated with the separation of the mass simulator payload from the rocket just minutes after launch.

Here’s the video of the launch – it goes for about 12 minutes:

The completed flight paves the way for a demonstration mission by Orbital to resupply the space station later this year. Antares will launch experiments and supplies to the orbiting laboratory carried aboard the company’s new Cygnus cargo spacecraft through NASA’s Commercial Resupply Services (CRS) contract.

Orbital is building and testing its Antares rocket and Cygnus spacecraft under NASA’s Commercial Orbital Transportation Services (COTS) program. After successful completion of a COTS demonstration mission to the station, Orbital will begin conducting eight planned cargo resupply flights to the orbiting laboratory through a US$1.9 billion NASA contract with the company.

“Today’s successful test marks another significant milestone in NASA’s plan to rely on American companies to launch supplies and astronauts to the International Space Station, bringing this important work back to the United States where it belongs,” said NASA Administrator Charles Bolden. “Congratulations to Orbital Sciences and the NASA team that worked alongside them for the picture-perfect launch of the Antares rocket. In addition to providing further evidence that our strategic space exploration plan is moving forward, this test also inaugurates America’s newest spaceport capable of launching to the space station, opening up additional opportunities for commercial and government users.

NASA’s Commercial Crew Program also is working with commercial space partners to develop capabilities to launch U.S. astronauts from American soil in the next few years.

Adapted from information issued by NASA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…