RSSAll Entries Tagged With: "Venus"

What’s up? Night sky for February 2014

WHEN STARTING OUT IN STARGAZING, most people are particularly keen to spot the planets. The problem is, that, to the novice, planets and stars look pretty much alike. The best way to identify planets is to determine their locations in relation to nearby bright stars or the Moon, and then see how watch as they change their positions slightly as each night passes. The information below will help you spot planets using this method.

Except where indicated, all of the phenomena described here can be seen with the unaided eye. Dates and times are for the Australian Eastern Summer Time zone, and sky directions are from the point of view of an observer at mid latitudes in the Southern Hemisphere.

7 Feb

It is First Quarter Moon today at 6:22am Sydney time. First Quarter is a good time to look at the Moon through a telescope, as the sunlight angle means the craters and mountains are throwing nice shadows, making it easier to get that 3D effect.

8 Feb

The just-past-half Moon is the north-western sky this evening, and just above it is a group of stars called the Hyades. See if you can spot them – they’re in a triangular formation. The Hyades is an ‘open star cluster’ about 153 light years from Earth, making it the closest such cluster to our Solar System. Although you’ll probably only be able to see a handful of stars with the naked eye (assuming, of course, that you’re not standing under a streetlight), a pair of binoculars will show many more – and long-exposure photographs reveal hundreds.

Just above and to the right of the Moon is a bright orange-coloured star called Aldebaran, although astronomers classify it as a red giant. It is roughly 44 times as big as the Sun and located about 65 light-years from Earth. Think about that – if Aldebaran were at the same distance from us as the Sun, it would appear 44 times as big in the sky. Just as well it’s a long way away!

View showing where the Moon is on the night of 8 February 2014

The Moon (shown bigger than it really is) will be near the star Aldebaran and the star cluster the Hyades on the evening of 8 February. Another star cluster, the Pleiades, is lower in the sky.

11 Feb

By tonight, you’ll see that Moon has moved a fair distance to the right (or east) of the Hyades, as a result of its slow orbit around the Earth. You won’t be able to miss what looks to be a bright star just below the Moon – this is the planet Jupiter. Grab a pair of binoculars and see if you can make out some tiny pinpricks of light on either side of the planet – these are the moons discovered by Galileo; Ganymede, Europa, Io and Callisto. Try to see all four – you might find there are two on each side of Jupiter, or one and three, or all four on one side – depending on where they are in their orbits around the planet. You might find that one or more are missing – this’ll be because that moon or moons is currently hidden behind Jupiter, or in the glare in front of the planet.

View showing the position of the Moon on 11 Feb

On the evening of 10 February, the Moon (not shown to scale) will be just above the planet Jupiter.

12 Feb

Today the Moon will reach the farthest point in its orbit around Earth, apogee, at a distance of 406,231 kilometres.

15 Feb

Full Moon occurs today at 10:53am Sydney time. If you’re out stargazing tonight and look just above (or north of) the Moon, you’ll see a bright blue star. This is Regulus, the brightest star in the constellation Leo. Located about 77.5 light years from Earth, Regulus is not one star but four, grouped into two pairs – with the naked eye we see only the brightest of the four. Multiple star systems are very common throughout the Milky Way galaxy.

20 Feb

Take a look around midnight tonight and you’ll see the Moon just below what appears to be a brightish red star. This is not actually a star but the planet Mars. A small planet, it doesn’t give away much detail even when viewed through a telescope.

Just below the Moon is Spica, the brightest star in the constellation Virgo. Like Regulus, Spica is a member of a multiple star system, in this case a binary (or two) star system. The two stars orbit each other so close together that not even a telescope can show them separated. In fact, so close are they that their mutual gravitational pull distorts each of them from a round shape into an egg shape. The Spica system is about 260 light years from Earth.

View showing the position of the Moon on 20 February

If you’re up after midnight on 20 February, you’ll be greeted by the sight of the Moon with the star Spica above and the planet Mars below.

22 Feb

Tonight it’s Saturn‘s turn, with the ringed planet appearing just below and to the right of the Moon. If you have access to even a small telescope, take a look at Saturn’s amazing rings.

23 Feb

It is Last Quarter Moon today at 4:15am Sydney time. In the early hours of this morning you’ll find the star Antares above and to the right of the Moon. Antares is the brightest star in the constellation Scorpius. Like Mars, it is a red colour too – in fact, the name Antares means ‘rival of Mars’. Because they’re both in the same part of the sky, this is a good time to compare the two.

26 Feb

If you’re up before dawn, take a look out to the east and you’ll see the thin crescent Moon just above a bright ‘star’ – this is actually the planet Venus, which, aside from the Sun and the Moon, is the brightest object in the sky. Because it is in our morning sky at present, it is called the ‘morning star’. Later in the year it will be visible to west in the evening sky, and will be known as the ‘evening star’.

View showing the position of the Moon on 26 February

This shows the view out to the east less than an hour before sunrise on 26 February. The thin crescent Moon is just above the planet Venus. Very low down on the horizon, and difficult to see, is the planet Mercury. The Moon will be just to the left of Mercury on 28 February.

28 Feb

Today the Moon will be at the closest point in its orbit, called perigee, which is the opposite of apogee. The distance between the two bodies today will be 360,438 kilometres. If you’re up and about before dawn, and you have an unobstructed (by buildings, trees, hills etc) view of the eastern horizon, see if you can spot the planet Mercury just to right of the very thin crescent Moon. It won’t be easy to see either Mercury or the Moon, but give it a try.

Here are some more great sources of southern stargazing information:

Melbourne Planetarium

Royal Astronomical Society of New Zealand

If you have any questions or comments on the night sky, we’d be happy to answer them. Please use the Feedback Form below. Happy stargazing!

Images courtesy IAU.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Weekly space gallery for January 18, 2014

WELCOME TO THE FIRST of our weekly collections of the best astronomy and space exploration images taken by observatories around the world and in space. Each week we’ll bring you a selection of our favourite recent images – if you like them (and we hope you do), please share them with your friends. And don’t forget you can elect to have this and other stories emailed direct to your inbox, just by signing up to our free email service – see the Subscribe box in the column at right.

So, let’s get started on this week’s images.

1. The Orion Nebula

Orion Nebula

An infrared view of the Orion Nebula.

One of the most famous sights in the sky, the Orion Nebula is a huge cloud of gas and dust about 1,500 light-years from Earth. Astronomers call it a ‘stellar nursery’ because many stars have been born, or are in the process of being born, out of all that gas and dust. See all the tiny red dots? Those are newly born stars. This false-colour image was taken by NASA’s Spitzer Space Telescope, which views the universe at infrared wavelengths. Courtesy NASA.

2. The Coma Cluster

Coma Cluster

The Coma Cluster of galaxies.

Galaxies tend to clump together in groups, or clusters. Some clusters comprise only a handful of galaxies, others have more than a thousand. The Coma Cluster – so-called because it is seen in the direction of the constellation Coma Berenices, which means ‘Berenice’s Hair’ (named after an ancient Egyptian queen) – is located about 350 million light years from Earth. Most of its 1,000-plus galaxies are elliptical (one of the two main galaxy shapes, the other being spiral). Pretty much all of the dots and blobs of light you can see in this Hubble Space Telescope image are galaxies; the three main ones are called IC 4041 (left), IC 4042 (middle) and GP 236 (right). The Coma Cluster is itself part of a larger grouping that also contains the Leo Cluster, and is called the Coma Supercluster. Courtesy ESA / Hubble & NASA; D. Carter (LJMU).

3. The Topsy Turvy galaxy

Topsy Turvy galaxy

The Topsy Turvy galaxy, with X-ray emission from regions surrounding two black holes shown in purple.

The Topsy Turvy galaxy (also known by its catalogue number, NGC 1313) is located about 13 million light years from Earth. Hidden within it are two black holes, whose presence is given away – where the purple patches are (false colour) – by energetic X-rays coming from gas being siphoned from companion stars. The X-ray data comes from NASA’s NuSTAR space telescope, while the background image is from the Digitised Sky Survey (made from pictures taken by ground-based telescopes). Courtesy NASA / JPL-Caltech / IRAP.

4. Planets in the dust

Dust ring around the star HD 142527

Dust around the star HD 142527 could be giving birth to planets.

Japanese astronomers have been studying a star called HD 142527, about 450 light years Earth. HD 142527 is a young star, surrounded by a huge, slightly lop-sided ring of gas and dust. The astronomers say that a dense spot in the ring is where planets could be forming. (Due to the wavelength used, the star is not visible in this image.) Courtesy ALMA (ESO/NAOJ/NRAO), NAOJ.

5. The Tarantula Nebula

The Tarantula Nebula

The Tarantula Nebula

The Tarantula Nebula is a huge cloud of gas and dust in the Large Magellanic Cloud, a neighbouring galaxy to our Milky Way. This Hubble Space Telescope infrared view shows cloudy whisps and many thousands of sparkling stars. Just to the left of centre is a tight group of stars known as R136. In early photographs, R136 seemed to be a single, giant star, and no one could work out how a star could grow to be so big. But eventually better imaging revealed it to be a cluster of stars – so many and so bright, that the light the emit is the main reason why the Tarantula’s gas and dust is all lit up. Courtesy NASA, ESA, E. Sabbi (STScI).

6. Looking down on Venus

South pole view of Venus.

The view looking down on Venus’ southern polar regions.

This black and white image of Venus was taken by the European Space Agency’s Venus Express spacecraft, which has been orbiting the planet since April 2006. The viewpoint is looking down on the south pole from an altitude of 50,000 kilometres. Venus is perpetually covered by thick clouds, but Venus Express’ instruments can pick out bands within those clouds, which are being blown by the prevailing winds from east to west (the opposite to winds here on Earth). The small black blobs are not real; they are artefacts of the imaging equipment. Courtesy ESA / MPS / DLR / IDA.

7. Rima Marius

Rima Marius

Rima Marius stretches 280 kilometres across the Moon.

Rima Marius is a lunar ‘rille’ or channel. Such channels are thought to form when a tunnel through which lava once flowed, collapses in on itself. Rima Marius is 280 kilometres long, winding its way across a flat plain known as the Oceanus Procellarum, or Ocean of Storms. This image was taken by NASA’s Lunar Reconnaissance Orbiter spacecraft. Courtesy NASA / GSFC / Arizona State University.

8. Tracks on Mars

Orbital shot showing tracks left by the Curiosity rover

An orbital shot showing tracks left by the Curiosity rover on Mars.

NASA’s Mars Reconnaissance Orbiter snapped this image of the martian surface on December 11, 2013. It clearly shows the tracks left by the Curiosity rover as it slowly makes it way across the floor of Gale Crater (the rover itself is out of frame). The rover has six wheels, three on each side; the distance between left and right wheels is about 3 metres. See if you can follow the tracks all the way from top right to bottom left. Courtesy NASA / JPL-Caltech / Univ. of Arizona.

9. Shadows on Saturn

Saturn

The shadows of Saturn’s rings cast upon the planet’s cloud tops.

Shadows cast by Saturn’s rings make the planet look like it has been painted with Indian ink while spinning on a potter’s wheel. The rings themselves are out of view in this image, taken by NASA’s Cassini spacecraft, which has been orbiting Saturn since 2004. Courtesy NASA / JPL-Caltech / Space Science Institute.

10. Docking at the Station

Cgynus craft docked at the International Space Station

Cgynus cargo craft docked at the International Space Station

Orbital Sciences Corporation’s Cygnus commercial cargo spacecraft is seen docked to the Harmony module of the International Space Station. Attached is the Station’s robot arm, called Canadarm2 (being the second generation of robot arm supplied by Canada). The Cygnus craft was launched aboard an Antares rocket on January 9. Courtesy NASA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

What’s up? The night sky for January 2014

WHEN STARTING OUT IN STARGAZING, most people are particularly keen to spot the planets, five of which are visible to the naked eye – Mercury, Venus, Mars, Jupiter and Saturn. The problem is that, to the novice, planets and stars look pretty much alike. An easy way to identify planets is to find them in relation to nearby bright stars or the Moon, and then watch as they change their positions slightly as each night passes. The information below will help you spot planets using this method.

Except where indicated, all of the phenomena described here can be seen with the unaided eye. Dates and times are for the Australian Eastern Summer Time zone, and sky directions are from the point of view of an observer at mid latitudes in the Southern Hemisphere.

People stargazing using a telescope

There’s plenty to see in the night sky during January 2014.

Jan 1

The Moon is in its ‘new’ phase (the opposite of ‘full’) tonight at 10:14pm. This means that, seen from Earth, it is in the same direction as the Sun, and therefore won’t be seen all night – which is good for stargazing, as the absence of its light will make fainter objects easier to see.

Jan 2

Today at 8:01am, the Moon will be at the closest point – called perigee – in its elliptical orbit around the Earth. The distance between the centres of the two bodies will be 356,921 kilometres.

Jan 4

Today the Earth reaches perihelion, which is the point at which our planet is closest to the Sun during its orbit. The distance separating the two bodies is 147,089,638 kilometres. Note the similarity between the words perigee and perihelion – perigee is used for anything orbiting the Earth (‘peri’ coming from the Greek for ‘around’, while the ‘gee’ part derives from gaia, the Greek word for Earth), while perihelion is used for anything orbiting the Sun (the ‘helion’ part coming from ‘Helios’, the ancient Greek god of the Sun).

There’s a common misconception that the Earth’s changing distance from the Sun (it varies from about 147 million to roughly 152 million kilometres over the course of the year) is responsible for giving us our summers and winters. This is wrong, and a few moments thought shows why. Taking perihelion as an example, the misconception says that with the Earth being at its closest point to the Sun, our planet should experience summer. Well, it’s certainly true that perihelion occurs when it is summertime in the Southern Hemisphere… but what season is it in the Northern Hemisphere? It’s winter. And why is it winter and not summer? Because perihelion has nothing to do with our seasons. The seasons are caused by the tilt of the Earth’s axis of rotation, which sees the Southern Hemisphere tilted toward the Sun at the end of the calendar year, and the Northern Hemisphere tilted away. Six months later it’s the other way around – the north is tilted toward the Sun (and thus the northern summer and southern winter are in the middle of the calendar year) and the south is tilted away.

Jan 8

It is first quarter Moon today at 2:39pm. A few days either side of first quarter is a good time to look at the Moon through a telescope, as the sunlight angle means the craters and mountains throw nice shadows, making it easier to get that 3D effect.

Jan 12

Tonight, the almost-full Moon will be just below the star Aldebaran, the brightest star in the constellation Taurus. Aldebaran is a red giant star roughly 44 times as big as the Sun, located about 65 light-years from Earth. Have a look to the left of Aldebaran and you’ll see a beautiful, broad group of stars in a V-shape. These are the Hyades. If you have a pair of binoculars, take a look; you’ll be amazed by the beautiful sight of these sparkling stars! (A little further to the left, or west, is an even more beautiful cluster of stars – the Pleiades. See the diagram for its location.)

Diagram of the night sky for January 12

The Moon will be near the star Aldebaran on the evening of January 12. Just above and to the left of Aldebaran is a group of stars called the Hyades – take a look with a pair of binoculars; it’s a beautiful sight. An even better cluster of stars, the Pleiades, is a little further to the left (or west). Below and to the right in this view is the planet Jupiter – the Moon will be close to it on January 15.

Jan 15

Tonight the almost-full Moon will be just above and to the right of what looks like a very bright star, but is in fact the planet Jupiter – the largest planet in our Solar System. If you have a decent pair of binoculars (ie. anything bigger than opera glasses), train them on Jupiter and you should be able to see its shape and perhaps even some of the ‘banding’ of the atmosphere (the planet’s different weather zones). You should also be able to see up to four tiny, bright pinpricks of light – these are the famous moons discovered by Galileo. You might see one or two on one side of Jupiter, and the others on the other side. (If you take a look in the late evening on January 18, you’ll see them all on the same side.)

Jan 16

Full Moon occurs today at 3:52pm. When the Moon is full, it rises in the east around the same time as the Sun is setting in the west, which means it will be visible all night long. This is great for finding your way around in the dark, but the Moon’s glare is generally not welcomed by stargazers as it makes fainter objects harder or impossible to see.

Still on the subject of the Moon, today at 12:54pm it will reach apogee (the opposite of perigee), which is the farthest point in its orbit around the Earth. The distance separating the centres of the two bodies will be 406,536 kilometres.

Jan 23

If you’re awake around midnight, look out to the east and you’ll see the Moon with a reddish star just below it. That ‘star’ is actually the planet Mars. Mars is a small planet, so you need at least a medium-sized backyard telescope to get any decent sort of view of it. But even as you gaze at it with the naked eye, stop and think for a moment – right now there are two missions on their way to Mars (NASA’s MAVEN and India’s Mars Orbiter), plus there are three orbiters and two operational rovers already working at or on the Red Planet. When the two new spacecraft reach their destination in September 2014, Mars is going to become a busy place!

Diagram of the evening sky for January 23

The Moon and Mars will be near each other in the sky in the early hours of January 23.

Jan 24

It is last quarter Moon today at 4:19pm. When you take a look tonight, you’ll notice that Moon has moved a bit since last night (as a result of its slow crawl around its orbit), and Mars is now above and to its left. But directly above the Moon is a bright star called Spica, which is the brightest star in the constellation Virgo. Spica is a blue giant star located about 260 light-years from Earth.

Jan 26

If you’re awake in the early hours after midnight, you’ll be rewarded with the view of the just-less-than-half Moon down near the eastern horizon, with a brightish ‘star’ just above it. That’s not a star, it’s the planet Saturn. If you have access to a small telescope, train it on Saturn and you’ll its magnificent system of rings.

Jan 29

If you’re up before the sunrise today, look out to the east and you’ll see a very thin crescent Moon. Just below it is what looks to be a very bright star, but is in fact the planet Venus. After the Sun and the Moon, Venus is the brightest object in the sky.

Diagram of the morning sky for January 29

The thin crescent Moon will be near Venus in the morning sky on January 29. (Venus is not shown to scale in this diagram.)

Jan 30

The Moon reaches perigee today, with the distance between the centres of the Earth and Moon being 357,079 kilometres.

Jan 31

New Moon occurs for the second time this month, at 8:39am

Here are some more great sources of southern stargazing information:

Melbourne Planetarium

Royal Astronomical Society of New Zealand

If you have any questions or comments on the night sky, we’d be happy to answer them. Please use the Feedback Form below. Happy stargazing!

Images courtesy IAU.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

What’s up? Night sky for February 2013

Night sky on February 3, 2013

Saturn and the Moon will appear near each other on February 3, 2013.

Except where indicated, all of the phenomena described here can be seen with the unaided eye. And unless otherwise specified, dates and times are for the Australian Eastern Standard Time zone, and sky directions are from the point of view of an observer in the Southern Hemisphere.

Feb 3

If you’re a night owl, look out to the east after midnight and you’ll see the Moon near the horizon. Below and to its right is what seems to be a bright star. It’s actually the planet Saturn. If you have access to even a small telescope, take a look. Its rings never fail to entrance. The gas giant planet has 62 confirmed natural satellites (ie. moons), and one artificial satellite – the NASA/ESA Cassini spacecraft, which has been exploring the Saturnian system since 2004. Saturn is presently about 1,455 million kilometres from Earth.

Feb 4

It is Last Quarter Moon today at 12:56am Australian Eastern Daylight Time (Feb 3, 13:56 Universal Time).

Feb 5

This evening, the Moon will appear close to the star Antares, the brightest star in the constellation Scorpius. Antares is a red supergiant star, about 880 times bigger and 10,000 times brighter than our Sun! It is about 550 light-years from Earth.

Feb 7

Today the Moon will be at the closest point in its orbit around Earth, called perigee. The distance between the two bodies will be 365,318 kilometres.

Feb 10

New Moon occurs today at 6:20pm Australian Eastern Daylight Time (07:20 Universal Time).

Feb 12

Just after sunset this evening, you might be able to see a very thin crescent Moon low on the horizon due west. To its left will be a brightish-looking ‘star’; it’s actually the planet Mercury. And just to Mercury’s left will be the ruddy-coloured planet Mars. Today Mercury is about 161 million kilometres from Earth, while Mars is about 348 million kilometres away.

Diagram showing the Moon and Jupiter

For stargazers in southern Australia, the Moon will pass in front of Jupiter on February 18, 2013.

Feb 18

There will be a major sky event this evening for those in the southern half of Australia! – the Moon will appear to move in front of the planet Jupiter. This is called an occultation (where ‘to occult’ means to ‘make go dark’). You’ll see the Moon slowly approaching Jupiter (which, to the naked eye, just looks like a bright star). Then, all of a sudden, as the Moon’s edge ‘reaches’ the planet, Jupiter will wink out. A short while later, after the Moon has moved on a bit (you’re actually watching it trundle along in its orbit), Jupiter will reappear on the other side.

Timings for the beginning of the event, in Standard (that is, non-Daylight Saving time – please adjust for your location if necessary) for capital cities are:

Adelaide: 10:00pm

Hobart: 10:22pm

Melbourne 10:33pm

Perth: 7:39pm

Unfortunately, the other capital cities will miss out.

Incidentally, it is First Quarter Moon this morning at 7:31am Australian Eastern Daylight Time (Feb 27, 20:31 Universal Time). First Quarter is a good time to look at the Moon through a telescope, as the sunlight angle means the craters and mountains are throwing nice shadows, making it easier to get that 3D effect.

Feb 19

In tonight’s evening sky, to the northwest you’ll see the Moon, and to it’s left will be a bright star. And it really is a star this time, not a planet. It’s Aldebaran, the brightest star in the constellation Taurus. Just to Aldebaran’s left, you might be able to see a wide grouping of stars (binoculars will help). This is called the Hyades star cluster.

And today the Moon is at the farthest point in its orbit around the Earth, called apogee, at a distance of 404,472 kilometres.

Feb 25

Just near the Moon in this evening’s sky, will be the star Regulus, the brightest star in the constellation Leo.

Feb 26

Full Moon occurs today at 7:26am Australian Eastern Daylight Time (Feb 25, 20:26 Universal Time).

There’s more great night sky viewing information at Melbourne Planetarium’s Skynotes site.

If you have any questions or comments on the night sky, we’d be happy to answer them. Please use the Feedback Form below. Happy stargazing!

Images courtesy IAU.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

What’s up? Night sky for January 2013

Except where indicated, all of the phenomena described here can be seen with the unaided eye. And unless otherwise specified, dates and times are for the Australian Eastern Daylight Time (AEDT) zone, and sky directions are from the point of view of an observer in the Southern Hemisphere.

January 2

If you’re an early riser, take a look out to the north-west and high up you’ll see a bright star near the Moon. This is Regulus, the brightest star in the constellation Leo. Actually, Regulus is not one star but four, grouped into two pairs. Multiple star systems are very common throughout the Milky Way galaxy.

The Moon will appear near the bright star Regulus on January 2.

The Moon will appear near the bright star Regulus on January 2.

And today the Earth reaches perihelion in its orbit around the Sun. Perihelion is the point in a solar orbit when the body in question (eg. Earth) is at its closest to the Sun. Perihelion occurs today at midday AEDT, at a distance between Earth and Sun of about 147,098,089 kilometres. (The opposite of perihelion is aphelion, which for Earth will occur on July 5, 2012 at a distance of about 152,097,351 kilometres.)

January 5

It is Last Quarter Moon today at 2:58pm Sydney time (03:58 Universal Time).

January 6

If you’re up very early this morning (from 2:00am onwards), you’ll see a bright star appearing to almost touch the Moon. This Spica, the brightest star in the constellation Virgo; it is a blue giant star about 260 light-years from Earth. And don’t miss tomorrow’s morning sight…

January 7

This morning, the Moon has moved along a bit in its orbit, and no longer appears to be near Spica. Instead, it appears to hover just above what appears to be another bright star, but which is instead the planet Saturn. If you have a small telescope, or can borrow someone else’s, take a look at Saturn – you’ll see the huge rings tilted nicely to our line of sight, and – depending on the power of your telescope – you might also be able to make out a couple of the planet’s moons, although they’ll only look like bright pinpricks of light.

January 7: If you're an early riser, take a look at the Moon and you'll see what appears to be bright star just below it. Well, that's actually not a star but the ringed planet Saturn.

January 7: If you’re an early riser, take a look at the Moon and you’ll see what appears to be bright star just below it. Well, that’s actually not a star but the ringed planet Saturn.

January 9

Again, the Moon has moved along in its orbit, and is now quite distant from both Spica and Saturn. This morning it appears near the red star Antares, the brightest star in the constellation Scorpius. Antares is a red supergiant star about 883 times bigger than our Sun, located about 470 light-years from us.

January 10

This morning the Moon, now a thin crescent, can be seen above what looks like a very bright star. Actually, it’s the planet Venus, low on the horizon. Venus will remain low in the east before dawn until the middle of February, when it will have moved too close to the Sun to be visible.

The Moon today will be at the closest point to Earth in its orbit, called perigee. The distance between the two bodies today will be 360,046 kilometres.

January 12

New Moon occurs today at 6:44am Sydney time (19:44 Universal Time on January 11).

January 14-27

If you have dark skies and are a little bit lucky, you might spot a few meteors between these dates, emanating from the southern sky. The Eta Carinid meteor shower occurs at this same time every year, but it’s not a very good one compared with others – you might be lucky to see a few meteors per hour, between midnight and dawn.

January 19

It is First Quarter Moon today at 10:45am Sydney time (23:45 Universal Time on January 18). First Quarter is a good time to look at the Moon through a telescope, as the sunlight angle means the craters and mountains are throwing nice shadows, making it easier to get that 3D effect.

January 21: The Moon, Jupiter and the Pleiades star cluster will all be close together in the evening sky.

January 21: The Moon, Jupiter and the Pleiades star cluster will all be close together in the evening sky.

January 21

In tonight’s evening sky, the Moon will be situated quite near a famous cluster of stars, called the Pleiades or Seven sisters. When the Moon is not around and the sky is dark, most people can make out 6 to 7 of the Pleiades stars, although eagle-eyed stargazers can see a few more. With the Moon tonight being more than half full, it might be a little harder to see them. But if you have a pair of binoculars or a small telescope, take a look and you’ll be rewarded with a lovely sight – there are actually hundreds of stars (only some of them are visible through small optical instruments) in this beautiful “open star cluster“, and it is also filled with beautiful whispy gas clouds, although the stars and the gas are not actually related to each other—we just happen to be seeing them at a time when the stars are drifting through the gas.

And what’s that bright object just to the right (east) of both the Moon and the Pleiades? That’s actually the planet Jupiter.

January 22

Today the Moon will reach the farthest point from Earth in its orbit, apogee, at a distance of 405,312 kilometres. Take a look at it, and you’ll see what looks like a bright star just above it – it’s actually the planet Jupiter, the largest planet in our Solar System. Even a pair of binoculars will begin to show its size and shape, as well as up to four of its moons. A small telescope will reveal the different cloud bands that colour its upper atmosphere.

January 27

Full Moon occurs today at 3:38pm Sydney time (04:38 Universal Time).

There’s more great night sky viewing information at Melbourne Planetarium’s Skynotes site.

If you have any questions or comments on the night sky, we’d be happy to answer them. Please use the Feedback Form below. Happy stargazing!

Images courtesy IAU.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Venus transit – get a live view from the Arctic

Transit of Venus with an aircraft in the field of view

Observers at the European Space Research and Technology Centre witnessed a spectacular event during the Venus transit of 2004 – an aircraft joined the planet in front of the Sun for a few fractions of a second. Copyright: Detlef Koschny.

SCIENTISTS AND AMATEUR ASTRONOMERS around the world are preparing to observe the rare occurrence of Venus crossing the face of the Sun on 5-6 June, an event that will not be seen again for over a hundred years.

The occasion also celebrates the first transit while there is a spacecraft orbiting the planet – the European Space Agency’s (ESA) Venus Express.

ESA will be reporting live from the Arctic island of Spitsbergen, where the Venus Express science team will be discussing the latest scientific results from the mission while enjoying a unique view of the 2012 transit under the ‘midnight Sun’.

A transit of Venus occurs only when Venus passes directly between the Sun and Earth. Since the orbital plane of Venus is not exactly aligned with that of Earth, transits occur very rarely, in pairs eight years apart but separated by more than a century.

The last transit was enjoyed in June 2004 but the next will not be seen until 2117.

The transit of Venus

The transit of Venus across the Sun as recorded by European Space Astronomy Centre observers located in Portugal 8 June 2004. Copyright: ESA.

Venus – key to the Solar System

Venus transits are of great historical significance because they gave astronomers a way to measure the size of the Solar System.

The transits of the 18th century enabled astronomers to calculate the distance to the Sun by timing how long it took for Venus to cross the solar disc from different locations on Earth and then using simple trigonometry.

Also, during the transit of 1761 astronomers noticed a halo of light around the planet’s dark edge, revealing Venus to have an atmosphere.

Thanks to spacecraft that have since visited Venus, including Venus Express, we now know that it hosts an inhospitable dense atmosphere of carbon dioxide and nitrogen with clouds of sulphuric acid.

Testbed for exoplanets

Today transit events are a valuable tool for developing methods for detecting and characterising planets orbiting other stars than the Sun, planets that astronomers refer to as exoplanets.

As a planet passes in front of a star, it temporarily blocks out a tiny portion of the starlight, revealing its presence and providing information about the planet’s size. Europe’s CoRoT space telescope has used this technique to discover over 20 exoplanets.

Transits are also being used to search for exoplanets that may harbour life. If the planet has an atmosphere a small fraction of the light from the star will pass through this atmosphere and reveal its properties, such as the presence of water or methane.

Map showing where the transit of Venus will be visible

World visibility of the transit of Venus on 5-6 June 2012. Spitsbergen is an Arctic island – part of the Svalbard archipelago in Norway – and one of the few places in Europe from which the entire transit is visible. For most of Europe, only the end of the transit event will be visible during sunrise on 6 June. Copyright: Michael Zeiler, eclipse-maps.com

Where to view the transit of Venus

During next month’s transit, astronomers will have the chance to test these techniques and add to the data collected during only six previous Venus transits observed since the invention of the telescope in the early 1600s.

The 2012 transit will be visible in its entirety only from the western Pacific, eastern Asia, eastern Australia and high northern latitudes.

For the US, the transit will begin in the afternoon of 5 June and for much of Europe the Sun will rise on 6 June with the transit almost finished.

If you are observing the event please remember — NEVER look at the Sun with unprotected eyes, through ordinary sunglasses or through a telescope, as this will cause permanent blindness.

Live updates from the Arctic

The Sun does not set at Spitsbergen in June, providing a unique opportunity to observe the entire transit from 22:04 GMT 5 June (00:04 CEST 6 June) to 04:52 GMT (06:52 CEST).

“We’re very excited about watching the transit from such a unique European location while Venus Express is in orbit around the transiting planet,” says Håkan Svedhem, ESA’s Venus Express project scientist.

“During the transit, Venus Express will make important observations of Venus’ atmosphere that will be compared with ground-based telescopes to help exoplanet hunters test their techniques.”

As ESA prepares for this rare event with observations from space and from the ground, we will provide background information about the transit on a dedicated blog at: http://blogs.esa.int/venustransit/

Live updates will be posted from Spitsbergen during 5-6 June as the world tunes in to watch Venus make its journey across the Sun for the last time this century.

Adapted from information issued by ESA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Transit of Venus – more online resources

Here’s a collection of web pages with information on the transit of Venus. We’ll add more links as they come to hand.

ABC Science: Your Guide to the Transit of Venus

Astronomical Society of Australia: Transit of Venus factsheet (small PDF download)

Sydney Observatory: How to see the Transit of Venus safely

Perth Observatory: Viewing the Transit of Venus in Perth

Stardome Observatory Planetarium, Auckland: Transit of Venus viewing

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Transit of Venus – viewing in Melbourne

ON WEDNESDAY JUNE 6, Venus will line up directly with the Sun and we’ll see the planet as a small black dot tracking across the bright Sun.

It’s an astronomical curiosity today, but in times past it prompted major scientific expeditions. Men devoted their lives to the transit – some were successful and there were also many tales of despair – as they tried to unlock the true size of the Solar System.

The transit in June will be the last in our lifetimes. No one will witness this event again until 2117, and people in Melbourne are perfectly placed to see it.

Join Dr Tanya Hill for breakfast and witness this once in our lifetime event. See the moment when Venus crosses onto the Sun and discover the stories and history that surround this momentous event.

This special event includes telescope viewing, a presentation highlighting the stories surrounding the transit and a light breakfast.

Please note: This event will go ahead regardless of the weather conditions. In the case of bad weather an alternative program will be offered including the Planetarium show “Guiding Lights”, an extended talk by Dr Tanya Hill, the Planetarium’s astronomer and supplemented by footage from other locations in Australia or off-shore via a live feed.

Tickets are strictly limited, so book early!

More information: Melbourne Planetarium Transit of Venus viewing

Adapted from information issued by Melbourne Planetarium.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Transit of Venus – Sydney viewing opportunity

THE UNIVERSITY OF WESTERN SYDNEY’S Penrith campus Observatory will be the best place in Sydney to witness one of the rarest astronomical phenomena of our lifetime – the transit of Venus – on June 6, 2012.

The transit of Venus occurs when Earth’s closest neighbour, the planet Venus, passes directly between Earth and the Sun. From Australia, Venus will look like a small, round silhouette, slowly moving across the surface of the Sun.

Director of the UWS Observatory, Associate Professor Miroslav Filipovic, says UWS has the biggest and best telescope within a 200-300km radius.

“The University’s 24inch (62cm) computerised telescope is equipped with special solar … filters, which will allow for a safe and exemplary viewing experience,” says Associate Professor Miroslav Filipovic.

“As part of the transit experience at UWS, guests will have the opportunity to view Venus’ travels through a range of telescopes and hear a short, educational talk.

“The entire event will also be televised in a new 3D movie theatre within the Observatory, and will be live-streamed on the University’s website.”

The transit of Venus occurs in pairs, in cycles of more than 100 years. Captain James Cook sailed to Tahiti to observe a pair of transits in 1761 and 1769, and our direct ancestors may have been fortunate enough to see the transits of 1874 and 1882.

The first transit of our lifetime occurred in 2004. After this year’s transit, Venus will not pass between Earth and the Sun again until December 2117 and 2125.

Members of the community are invited to book-in for a special one-hour viewing of this important celestial event, from 8am on Wednesday 6th June 2012.

Although optimal viewing of the transit is dependent on a clear and cloud-free day, this special event will run regardless of the weather with the assistance of the Western Sydney Amateur Astronomy Group (WSAAG).

WHAT: The UWS transit of Venus Experience

WHEN:  The transit will take place from 8.15am to 2.45pm, Wednesday, 6th June 2012

WHERE: Building AO, UWS Penrith campus, Great Western Highway, Werrington North

MAP: http://uws.edu.au/__data/campus_maps/Werrington_North_Campus_North_L.pdf

COST: $10 per person

WEBSITE: http://www.uws.edu.au/observatory

Bookings are essential. To schedule your viewing of the transit of Venus, please contact the UWS Observatory on: (02) 4736 0135 (Mondays, Wednesdays and Thursdays) or email r.mccourt@uws.edu.au

Adapted from information issued by UWS.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Transit of Venus – live coverage details

ON WEDNESDAY JUNE 6, the people of Earth will be able to witness a ‘transit of Venus,’ when the planet Venus can be seen moving across the face of the Sun.

“Since the phenomena was first recognised and observed by Jeremiah Horrocks, an English astronomer and clergyman in 1639, there have only been five transits of Venus – 1761, 1769, 1874, 1882 and 2004,” says Dr Paul Willis, Director of the Royal Institution of Australia.

“By observing a transit, astronomers could, for the first time, calculate the distance from the Earth to the Sun with some accuracy,” he adds. “This had astounding implications for science’s understanding of the universe.

Livestreaming of the transit will be shown on RiAus website on 6 June 2012, from 7:30am – 3pm

“This is the last time people will get the chance to see this until 2117 – and for most of us the chances of being here then are pretty slim,” says Dr Nick Lomb, Curator of Astronomy, Powerhouse Museum. “It’s an experience not to be missed.”

“What many people don’t realise is that Australia has a very real connection to this rare astronomical event,” says Valerie Sitters, Collections Specialist, the State Library of South Australia.

“Lieutenant James Cook was sent to Tahiti on HMS Endeavour to observe the transit that occurred in 1769,” Sitters adds. “He was then ordered to search for the great south land when he discovered and charted the east coast of Australia.”

RiAus transit of Venus livestreaming site: http://riaus.org.au/events/livestreaming-of-the-transit-of-venus/

Adapted from information issued by RiAus.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…