RSSAll Entries Tagged With: "SKA"

Australian telescope to reveal early universe

SOLAR STORMS, SPACE JUNK and the formation of the Universe are about to be seen in an entirely new way with the start of operations this week of the $51 million Murchison Widefield Array (MWA) radio telescope.

The first of three international precursors facilities to the $2 billion Square Kilometre Array (SKA) telescope, the MWA is located in a remote pocket of outback Western Australia. It is the product of an international project led by Curtin University and was officially turned on this morning by Australia’s Science and Research Minister, Senator Kim Carr.

Using bleeding edge technology, the MWA will become an eye on the sky, acting as an early warning system that will potentially help to save billions of dollars as it steps up observations of the Sun to detect and monitor massive solar storms. It will also investigate a unique concept that will see stray FM radio signals used to track dangerous space debris.

Night-time photo of antennae of the MWA

Antennae of the MWA in outback Western Australia. Photo by John Goldsmith.

The MWA will also give scientists an unprecedented view into the first billion years of the Universe, enabling them to look far into the past by studying radio waves that are more than 13 billion years old. This major field of study has the potential to revolutionise the field of astrophysics.

“This collaboration between some of astronomy’s greatest minds has resulted in the creation of a groundbreaking facility,” Director of the MWA and Professor of Radio Astronomy at Curtin University, Steven Tingay said.

“Right now we are standing at the frontier of astronomical science. Each of these programs has the potential to change our understanding about the Universe.”

Nine major projects

The development and commissioning of the MWA, the most powerful low frequency radio telescope in the Southern Hemisphere, is the outcome of nearly nine years’ work by an international consortium of 13 institutions across four countries (Australia, USA, India and New Zealand).

The detailed observations will be used by scientists to hunt for explosive and variable objects in the Milky Way such as black holes and exploding stars, as well as to make the most comprehensive survey of the Southern Hemisphere sky at low radio frequencies.

From this week, regular data will be captured through the entirely static telescope, which spans a three-kilometre area at the CSIRO’s Murchison Radio-astronomy Observatory, future home to the SKA.

Close-up shot of some MWA antennae

The MWA comprises thousands of small antennae spread across a three-kilometre-wide section of the Western Australian desert.

The data will be processed 800 kilometres away at the $80 million Pawsey High Performance Computing Centre for SKA Science, in Perth, carried there on a link provided by the NBN and enabled by AARNet. The MWA will be the Pawsey Centre’s first large-scale customer.

Nine major research programs were announced at the launch, with more than 700 scientists across four continents awaiting the information the telescope has now begun to capture.

“Given the quality of the data obtained during the commissioning process and the vast areas of study that will be investigated, we are expecting to see preliminary results in as little as three months’ time,” Professor Tingay said.

“This is an exciting prospect for anyone who’s ever looked up at the sky and wondered how the Universe came to be.

“The MWA has and will continue to lift the bar even higher for the SKA.”

Forerunner to the SKA

Under Professor Tingay and fellow colleague Professor Peter Hall’s guidance, Curtin University has been awarded a $5 million grant by the Australian Government to participate in the SKA pre-construction program over the next three years, with the MWA’s unique insight being used to develop a low frequency radio telescope that is expected to be 50 times more sensitive.

The MWA has been supported by both State and Federal Government funding, with the majority of federal funding being administered by Astronomy Australia Limited.

The MWA project says it recognises the Wadjarri Yamatji people as the traditional owners of the site on which the MWA is built and thanks the Wadjarri Yamatji people for their support, as well as that of Astronomy Australia Limited.

The MWA launch event took place simultaneously at the Astronomical Society of Australia’s annual scientific meeting hosted at Monash University Melbourne and the Murchison Radio-astronomy Observatory in the Murchison, Western Australia.

More information: Murchison Widefield Array

Adapted from information issued by Curtin University.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Australia to share in world’s largest telescope

Artist's impression of SKA dishes

Artist's impression of the section of the Square Kilometre Array that will use traditional dish-shaped antennae. Other parts of the SKA will use different antennae technology.

RESEARCHERS AT THE International Centre for Radio Astronomy Research (ICRAR) are celebrating today after hearing that Australia will share in hosting the world’s largest telescope – the Square Kilometre Array (SKA).

ICRAR – a joint venture between Curtin University and The University of Western Australia – has been working towards the $2 billion SKA since its launch in 2009.

“We’ve been working very hard to make SKA a reality and we’re glad to see the project reach this major milestone. ICRAR is looking forward to taking part in the next stage of the SKA through our expertise in Engineering, Information Technology and Astronomy,” says ICRAR Director Professor Peter Quinn.

Two candidate sites have been bidding to host the SKA, one in Southern Africa and one in Australia and New Zealand, since 2005. It was announced earlier this evening by the International SKA Organisation that the SKA would be split between both sites.

Professor Quinn said sharing the SKA between Africa and Australia allows the project to benefit from the best of both sites, building on the substantial investment in infrastructure and expertise that already exists in both locations.

Shared strengths

The new plan to share the SKA will see Australia’s Mid West hosting two key components of the telescope: a group of dishes equipped with Australian-designed multi-pixel radio cameras; and the ‘Aperture Array’ portion, made up of innovative, non-moving, antennae designed to collect lower frequency radio waves from the whole sky.

This part of the SKA will be optimised to survey large portions of the sky quickly, a particular strength of Australian astronomy.

South Africa will host a complementary group of dish-shaped telescopes designed to observe smaller sections of the sky in more detail, following up on regions of interest discovered using the survey portion.

“This model for splitting the SKA closely follows the workings of other observatories around the world; often separate instruments will survey the sky and inform where another telescope should look closer,” says Professor Quinn.

The divide also plays to the strengths of each country’s site, relying on Australia’s expertisedeveloped during the design and construction of radio astronomy survey instruments, such as the Australian SKA Pathfinder (ASKAP) and the Murchison Widefield Array (MWA).

MWA antennae

Unlike traditional "dish" antennae, the Murchison Widefield Array uses strange-looking antennae space out on the ground. The SKA will field a huge network of such antennae.

Western Australia to benefit

ICRAR’s Curtin University node is the Lead Organisation of the MWA, the only low-frequency Precursor to the SKA, and as a founding member of the predominantly European ‘Aperture Array Design and Construction’ consortium, ICRAR is applying its expertise to the SKA’s new-generation Aperture Arrays.

“Curtin University is proud to be involved in the SKA project through our joint venture partnership in ICRAR. In particular, we are pleased that our early initiatives in the Aperture Array domain and towards the MWA have proved important in bringing the SKA to Australia. We congratulate everyone involved in the decision, and look forward to the future of this inspiring project,” says Curtin Vice-Chancellor Professor Jeanette Hacket.

ICRAR’s node at The University of Western Australia has been working with international institutions to cost and develop a design for the SKA’s extremely powerful computing systems.

The Vice-Chancellor of The University of Western Australia, Professor Paul Johnson, said UWA welcomed the opportunity to play a key role in this historic quest to advance human knowledge of science and the Universe. “Hosting part of the Square Kilometre Array in Western Australia will enable researchers at ICRAR’s UWA node to make a significant contribution to this ground breaking telescope project. Their work on high performance computing systems for astronomy and sky surveys will help lead a dramatic advance in international astronomy using new-generation telescopes around the world.”

World-leading facilities in place

Professor Quinn said that ICRAR is a world leader in survey science and technology in both radio and optical astronomy, and is looking forward to playing a major role in SKA surveys.

Due to the investment already present in both sites, a split SKA will be able to achieve its scientific goals without substantial added costs.

“Placing a major part of the SKA here shows international recognition of Australia’s strength in radio astronomy and the high quality radio-quiet site Australia has developed in WA’s Mid West,” says Professor Quinn.

It also recognises the significant investment made by the WA Government, the Australian Federal Government, CSIRO, and the ICRAR joint venture partners, to turn Western Australia into a hub for world-class science and engineering. Before the SKA starts observations in 2019, the MWA and ASKAP projects, together with iVEC’s new $80 million Pawsey Supercomputing Centre, and ICRAR itself, will produce excellent science on the path to the SKA.

“These global science endeavours will continue to benefit Western Australia and the international scientific community long into the future. The effort Australia and WA has made in infrastructure, legislation and policies will make the Murchison Radio-astronomy Observatory a significant centre for global science for decades to come,” says Professor Quinn.

“As an International centre, we’re eager to continue our work with colleagues in Africa and the rest of the world to build the SKA and use it to explore the Universe in 10,000 times more detail than ever before.”

Adapted from information issued by Curtin University. Images courtesy SPDO / TDP / DRAO / Swinburne Astronomy Productions; Photography by Paul Bourke and Jonathan Knispel (supported by WASP (UWA), iVEC, ICRAR, and CSIRO).

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

SKA telescope to be split

Artist's impression of SKA dishes

Artist's impression of SKA dishes.

IT HAS JUST BEEN ANNOUNCED that the international Square Kilometre Array (SKA) radio telescope system, will be hosted jointly by the two bidding regions – Australia-New Zealand and South Africa. The SKA will comprise around 3,000 antennae of different types to cover low-, mid- and high-frequency ranges.

Following is the text of the announcement made by the SKA organisation:

The Members of the SKA Organisation today agreed on a dual site solution for the Square Kilometre Array telescope, a crucial step towards building the world’s largest and most sensitive radio telescope.

The ASKAP (Australian Square Kilometre Array Pathfinder) and MeerKAT precursor dishes will be incorporated into Phase I of the SKA which will deliver more science and will maximise on investments already made by both Australia and South Africa.

The majority of the members were in favour of a dual-site implementation model for SKA. The members noted the report from the SKA Site Advisory Committee that both sites were well suited to hosting the SKA and that the report provided justification for the relative advantages and disadvantages of both locations, but that they identified Southern Africa as the preferred site. The members also received advice from the working group set up to look at dual site options.

The majority of SKA dishes in Phase 1 will be built in South Africa, combined with MeerKAT. Further SKA dishes will be added to the ASKAP array in Australia. All the dishes and the mid frequency aperture arrays for Phase II of the SKA will be built in Southern Africa while the low frequency aperture array antennas for Phase I and II will be built in Australia.

“This hugely important step for the project allows us to progress the design and prepare for the construction phase of the telescope. The SKA will transform our view of the Universe; with it we will see back to the moments after the Big Bang and discover previously unexplored parts of the cosmos,” says Dr Michiel van Haarlem, Interim Director General of the SKA Organisation.

The SKA will enable astronomers to glimpse the formation and evolution of the very first stars and galaxies after the Big Bang, investigate the nature of gravity, and possibly even discover life beyond Earth.

“Today we are a stage closer to achieving our goal of building the SKA. This position was reached after very careful consideration of information gathered from extensive investigations at both candidate sites,” said Professor John Womersley, Chair of the SKA Board of Directors. “I would like to thank all those involved in the site selection process for the tremendous work they have put in to enable us to reach this point.”

Factors taken into account during the site selection process included levels of radio frequency interference, the long term sustainability of a radio quiet zone, the physical characteristics of the site, long distance data network connectivity, the operating and infrastructure costs as well as the political and working environment.

The agreement was reached by the Members of the SKA Organisation who did not bid to host the SKA (Canada, China, Italy, the Netherlands and the United Kingdom). The Office of the SKA Organisation will now lead a detailed definition period to clarify the implementation.

Scientists and engineers from around the world, together with industry partners, are participating in the SKA project which is driving technology development in antennas, data transport, software and computing, and power. The influence of the SKA project extends beyond radio astronomy. The design, construction and operation of the SKA have the potential to impact skills development, employment and economic growth in science, engineering and associated industries, not only in the host countries but in all partner countries.

About the SKA

The Square Kilometre Array will be the world’s largest and most sensitive radio telescope. The total collecting area will be approximately one square kilometre giving 50 times the sensitivity, and 10,000 times the survey speed, of the best current-day telescopes.

Thousands of receptors will extend to distances of 3,000 km from the centre of the telescope, the SKA will address fundamental unanswered questions about our Universe including how the first stars and galaxies formed after the big bang, how dark energy is accelerating the expansion of the Universe, the role of magnetism in the cosmos, the nature of gravity, and the search for life beyond Earth.

The target construction cost is €1,500 million and construction of Phase 1 of the SKA is scheduled to start in 2019. The SKA Organisation, with its headquarters in Manchester UK, was established in December 2011 as a not-for-profit company in order to formalise relationships between the international partners and centralise the leadership of the project.

Members of the SKA Organisation:

Australia: Department of Innovation, Industry, Science and Research

Canada: National Research Council

China: National Astronomical Observatories, Chinese Academy of Sciences

Italy: National Institute for Astrophysics

New Zealand: Ministry of Economic Development

Republic of South Africa: National Research Foundation

The Netherlands: Netherlands Organisation for Scientific Research

United Kingdom: Science and Technology Facilities Council

Associate member:

India: National Centre for Radio Astrophysics

Images courtesy SPDO / Swinburne Astronomy Productions.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

The year ahead in space

Artist's impression of the Curiosity rover on Mars.

Artist's impression of the Curiosity rover on Mars. The craft is due to arrive on Mars on August 6, 2012.

THIS YEAR IS GOING TO BE A BIG ONE in terms of space activity, and will include some events you’ll be able to experience firsthand. Let’s count down the top five.

At number five we have NASA’s Mars Science Laboratory mission, carrying the Curiosity rover to the Red Planet. Scheduled to arrive on August 6, it will land in Gale Crater (named after a 19th-20th century Australian astronomer, Walter Frederick Gale) and look for signs of organic chemicals. The 900-kilogram, nuclear-powered rover has a primary mission of two years but is expected to last for much longer than that.

At number four we have the total eclipse of the Sun on November 14. The path of totality runs along a narrow west-east strip of far northern Queensland, taking in Cairns and surrounding areas. The thousands of people who are expected to flock to the area will experience two minutes of totality shortly after sunrise—observers elsewhere in Australia will witness a partial eclipse.

After this, the next total solar eclipse to be visible from Australia will be in 2028, when the path of totality will run straight through Sydney.

Transit of Venus

The transit of Venus will be seen on the morning of June 6 in Australia. There won't be another one until the year 2117.

Coming in at number three is an event you won’t want to miss, as you’ll never get a chance to see another one. It’s the transit of Venus, which will happen on the morning of June 6. A transit occurs when one of the inner planets, in this case Venus, moves between Earth and the Sun and we see it as a small black dot slowly crawling across the solar face. It was to observe a transit of Venus that Captain Cook travelled to the South Pacific in the 18th century … and on his way home bumped into a certain large, dry continent, girt by sea.

Transits of Venus are very rare. They happen in pairs eight years apart (so the last one was in 2004), but between pairs there is a gap of over 100 years. So the 20th century totally missed out, and after June there won’t be another one until the year 2117. So don’t miss it!

Number two on our list is the decision on where the Square Kilometre Array, or SKA, will be built. The SKA will be an enormous network of radio dishes and antennae spread over an area the size of a continent. It will enable astronomers to look back towards the beginning of time, and study the evolution of stars and galaxies throughout cosmic history.

Artist's impression of part of the Square Kilometre Array.

Artist's impression of part of the Square Kilometre Array.

In a situation reminiscent of the Olympics, two regions have put in bids to host the facility and are eagerly awaiting the decision of the international panel. A joint bid by Australia and New Zealand is up against a consortium of southern African countries. The decision could be announced next month. If Australasia gets it, the core of the network will be located in a remote region of Western Australia, but with many other dishes spread out across the nation and into New Zealand.

And so after all of these fantastic events, what could we possibly have in the number one spot on our countdown? What will be this year’s biggest cosmic event? Why, the very survival of Planet Earth of course! In case you haven’t heard, a lot of people seem to be very worried about two things—the apparent end of the Mayan Long Count calendar in December (and the implied end of civilisation as we know it), and a collision between Earth and a planet called Nibiru.

Well, as far as the Mayan calendar is concerned, there is no cause for alarm. Like the Gregorian calendar we use every day, it will simply tick over to a new Long Count and we’ll all live happily every after.

That is, unless we get wiped out by that collision with Nibiru. Frightened? Don’t be. For you see, there’s a basic flaw in the Nibiru hypothesis, and it’s simply this … Nibiru doesn’t exist. It’s a fiction invented by some loopy, cosmic conspiracy nutters. There is no evidence for such a planet, and no evidence that Earth is in any danger from a collision with any other planet, known or unknown. Phew!

UPDATE, February 6: BTW, I misspoke on the Today Show this morning, saying that the next total solar eclipse after this year’s one will occur in the year 2128. I should have said 2028 of course.

Story by Jonathan Nally

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Australian SKA site producing the goods

  • Western Australia radioastronomy site now active
  • Already producing world-class research
  • Targets are as close as the Moon and as distant as quasars

CSIRO’s MURCHISON RADIOASTRONOMY OBSERVATORY (MRO), located in remote Western Australia, is the site proposed by Australia and New Zealand to host the high-density core of the multi-billion dollar Square Kilometre Array (SKA), and is already producing world-class research that will be described at an international conference in the UK this week.

The research uses the Murchison Widefield Array (MWA), a $50m SKA Precursor telescope located at the MRO. The MWA project is led by the International Centre for Radio Astronomy Research (ICRAR) at Curtin University.

MWA Project Director, Professor Steven Tingay, will be presenting the results at an international conference in the UK last week, and said, “The MWA is just starting to come online but is already producing world-class research, due to the extraordinarily high quality of the MRO as a location for ultra-sensitive radio telescopes.”

The MWA uses stationary antennae that look like strange metallic spiders, with no moving parts. There will be 128 groups of 16 antennae, each group known as a “tile”. The system will use huge computing power to undertake sensitive surveys of the cosmos.

An MWA antennae tile group

Unlike the CSIRO's Parkes "dish", the Murchison Widefield Array uses strange-looking antennae space out on the ground. Seen here are three groups of 16 antennae. The system will use 128 groups.

Low interference level

Professor Tingay said that a critical requirement for the MWA is the need to operate in an environment free from radio interference generated by human activities. FM radio stations, mobile phones, cars and industrial activities are major sources of interference that drown out the whisper-faint radio signals from objects in the distant universe.

“For this reason, the MWA has been constructed at the MRO, where the level of interference is much lower than most other observatory locations around the world. An indication of the MRO site’s pristine conditions is the amount of data that is lost due to interference. At the MRO this is less than 1%, compared to close to 100% at some other observatory locations around the world,” said Tingay.

Due for completion November this year, the MWA already has a steady flow of research from it’s current configuration due to the excellent radio-quiet conditions of the MRO.

Recently, astronomers from MIT in Cambridge, Massachusetts, have used the MWA to image an area of the sky 20,000 times larger than the full Moon, covering a region of the universe that the MWA will search for the very first stars and galaxies to form, soon after the Big Bang. Researchers from the University of Washington have determined that the MWA should be capable of detecting these signals.

Aside from these papers, an avalanche of astrophysics research from the MWA is about to appear in print, ranging from studies of explosions on the Sun, to observations of signals bouncing off the Moon, to surveys looking for highly variable quasars.

The MWA is being delivered by an international consortium of 13 institutions in four countries: Australia; the USA; India; and New Zealand.

More information: Murchison Widefield Array

Adapted from information issued by ICRAR. Photography by Paul Bourke and Jonathan Knispel (supported by WASP (UWA), iVEC, ICRAR, and CSIRO).

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Revolutionary new telescope in WA

MWA antennae

Antennae of the Murchison Widefield Array (MWA) in the Murchison Radio-astronomy Observatory, Western Australia. Credit: Dr Natasha Hurley-Walker (ICRAR).

A QUEST TO STUDY the earliest stars and galaxies in the Universe is underway, with local industry building the first major pieces of a revolutionary new radio telescope in Western Australia, as part of the Murchison Wide-field Array.

Murchison Wide-field Array (MWA) industry partner and Fremantle-based high-technology company, Poseidon Scientific Instruments (PSI), has been awarded a $1.3m contract by Curtin University to build 16 packages of sensitive electronics, using a smart design suited to the environmental and radio-quiet conditions of outback WA.

The MWA is located at the Murchison Radio-Astronomy Observatory, a site operated by CSIRO and a proposed core site for the multi-billion dollar Square Kilometre Array (SKA).

The MWA will be the first of three official SKA precursor telescopes to be completed, proving the technology and science on the path to the SKA.  Australia and New Zealand are bidding to host the SKA, with the site location to be decided in February 2012.

MWA site

The desolate landscape of outback Western Australia is perfect for radio astronomy.

The MWA is being built by an Australian consortium led by The International Centre for Radio Astronomy Research (ICRAR), a joint venture between Curtin University and The University of Western Australia, in close collaboration with US, Indian and New Zealand partners.

ICRAR Deputy Director, Professor Steven Tingay, said PSI was a world-class technology company and working with its local expertise to design and develop components for the international project was an enormous advantage.

“PSI will build 16 electronics packages for the MWA, the culmination of more than two years of collaboration in which PSI have been deeply involved in the design cycle. They are a valued collaborator, not just another cog in the supply chain,” Professor Tingay said.

The innovative package would also prevent the electronics from interfering with other equipment on the site, preserving the uniquely radio-quiet environment of the Murchison.

“The combination of the MWA and the radio-quiet environment of the Murchison will allow us to search for the incredibly weak signals that come from the early stages in the evolution of the Universe, some 13 billion years ago,” Professor Tingay said.

One of ICRAR’s goals is to partner with Australian industries to help position them to participate in future radio astronomy opportunities, such as the SKA. The MWA partnership with PSI is one such success story.

Adapted from information issued by ICRAR. Panorama image by Paul Bourke and Jonathan Knispel (supported by WASP (UWA), iVEC, ICRAR, and CSIRO).

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Radio astronomy protected in Western Australia

Artist's impression of dishes that will make up the SKA radio telescope.

Artist's impression of dishes that will make up the SKA radio telescope.

ENHANCED PROTECTIONS are now in place for the Mid West Radio Quiet Zone (RQZ) in remote Western Australia (near Boolardy Station), around 200 kilometres east of Meekatharra…a candidate site for the proposed Square Kilometre Array (SKA).

The RQZ was established in 2005 to provide an environment that protects highly sensitive equipment used for radio astronomy from unwanted radio communications signals.

These arrangements protect the radio telescopes currently in place at the Murchison Radioastronomy Observatory—such as the Australian SKA Pathfinder (ASKAP) and the Murchison Wide-field Array (MWA)—as well as those proposed in the Australian-New Zealand bid to host the SKA.

ASKAP dish

One of the Australian SKA Pathfinder (ASKAP) dishes.

“A clear regulatory framework to support radio quiet arrangements will further assist Australia to create the world’s best radioastronomy facility,” said Australian Communications and Media Authority (ACMA) Chairman, Chris Chapman.

“This will provide a platform that should be ideal for future radioastronomy projects, including the €1.5 billion SKA project.”

Mr Chapman said the new protection measures provide greater clarity and certainty to the arrangements that protect radio astronomy services in the RQZ.

‘The new measures continue to provide for radio quiet while supporting the use of spectrum by other users and placing the lowest feasible burden on industry in the region,’ said Mr Chapman.

The introduction of the enhanced protections for the RQZ follows a very extensive consultation process in which the ACMA sought the views of interested stakeholders.

More information: ACMA Planning for the radio astronomy service

Adapted from information issued by ACMA. Images courtesy SPDO / Swinburne Astronomy Productions / CASS / Terrace Photographers.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Dishes take shape in the desert

ASKAP dishes

The Australian Square Kilometre Array Pathfinder, or ASKAP, is under construction in the remote Western Australian desert.

THE CSIRO’S LATEST RADIO TELESCOPE—the Australian Square Kilometre Array Pathfinder, or ASKAP—is now taking shape in the remote Western Australian desert.

When completed in 2012 it will comprise 36 dishes all acting in concert to produce the same result as one big dish. Cutting-edge receiver technology invented by CSIRO scientists will give it an extremely wide field of view. This, coupled with high-speed electronics and an ultra-fast optical fibre link to a dedicated computing centre in Perth, will make ASKAP arguably the best radio telescope system in the world.

ASKAP’s first five years of observations are already booked out by teams from around the world, and the science studies it will tackle are some of the biggest around—how did the earliest stars and galaxies form; how have galaxies evolved through time; what role has magnetism played in the cosmos; and can Einstein’s theories stand ever-more stringent tests?

Antony Schinckel

ASKAP Project Director, Antony Schinckel

ASKAP is also the Australian and New Zealand “pathfinder” for the ultimate prize—the Square Kilometre Array, or SKA. The SKA will be a vast collection of thousands of dishes and antennae spread across an area the size of a continent. A decision will be made next year by an international committee, as to whether the SKA will be hosted in Australia-New Zealand or southern Africa. The linked telescopes will make images ten times more detailed than those of the Hubble Space Telescope.

SpaceInfo.com.au wanted to get an update on progress with ASKAP, so we spoke to the man in charge—ASKAP Project Director Antony Schinckel, of CSIRO’s Astronomy and Space Science division—to find out how things are going in the WA desert:

Can you give us a rundown on the state of construction of ASKAP?

We’re very happy with how things are going—we’re at the point where there is substantial activity on site. Major infrastructure construction commenced in May. The first phase of that was that the company doing the work needed to put in their temporary accommodation camp, as there are no motels for hundreds of kilometres!

Between now and early December we’ll complete all of the 30 remaining antenna foundations, the access tracks to each antennae, fibre and power distribution around the site and to each antenna, and then the central building as well—all of the primary infrastructure that doesn’t include the science instruments and power systems.

It must be a difficult task, building hi-tech facilities that are essentially in the middle of nowhere?

With these remote sites there are a lot of logistics that need to be understood and got moving properly, but the contractors have a fair bit of experience with that. Most of it is normal civil engineering, although there are a few subtleties—for instance, the concrete foundations for the antennae need to be a certain minimum stiffness.

The unusual bits in a sense are the optical data fibre links between the antennae and the central site. Our raw data rate will be phenomenally high, about 74 terabits per second for the total 36 antennae. That data then goes into some special equipment (the beam former and the correlator) which ramps down the rate fairly significantly before it is sent via cable down to Perth.

ASKAP antenna

ASKAP will comprise 36 hi-tech antennae

How are you going to handle the enormous amounts of data produced by the 36 ASKAP antennae?

Well, it’s going to be a really interesting challenge how we treat this. We can’t afford to archive the absolute raw data—the volume is just too high. So working out which are the critical data products to archive right up front is going to prove a real challenge. We’ve clearly got some plans on which ones are the most important, but it’ll be fascinating to see over the next few years if we end up archiving those or finding we have to modify it a little bit.

The Pawsey Centre in Perth is a key part of this in terms of the data reduction.

The actual fibre in the ground that CSIRO has put in, is through a contract with AARNet with major sub-contracts to CCTS and North Coast Holdings, out of Geraldton. The fibre has now been fully laid and tested. The fibre is all buried, which is easier long term than having it up on aerial poles. The fibre is better protected when buried. There are three booster huts along the length of the fibre.

There are two remote booster huts that are solar powered with the possibility of back-up diesel if required. And there’s one in the town of Mullewa, which is just on grid power with back-up.

As far as terrain goes, there’s a gentle slope 350km up from Geraldton to the site—we end up at an elevation of about 370 metres.

How will you supply electrical power to such a remote site?

With power, our intention long-term is to have as a renewable a power source as we possibly can. For all sorts of obvious reasons, we want to go with generating most of our power through whatever renewable resources we have. Out in that region of Western Australia in particular, solar power is extremely attractive. It’s one of the places with the highest solar insolation in the world. So solar will be a substantial part of it.

To begin with we’ll have a base power capability from diesel generators, but over a number of years we’ll be expecting to be adding or start off with some solar on top of the diesel, and then in a couple of more years we have some additional funds that will enable us to expand that significantly around 2013-14.

ASKAP dish being installed

The CSIRO has been particularly pleased with the quality of the antennae, built by the 54th Research Institute of China Electronics Technology Group Corporation (known as CETC54).

Power storage is something of an issue. That’s partly why we’ve put the funding back a couple of years, to see what eventuates with power storage options by the time ASKAP is really up and operational. The focus now is on what we need to get it going.

You have six dishes installed and two more being installed right now. What’s the schedule for the rest of them?

It’s a fairly continuous process of installing the remaining antennae right through this year and into early 2012, at about 3 to 4 per month. A team from the Chinese manufacturer, CETC54, comes out to supervise their construction.

With the dishes, there’s one point there that we’ve been particularly thrilled with. We specified a surface accuracy of 1mm but the delivered capability substantially exceeds that—most of the antennae are coming in with an accuracy of about 0.5mm. This means in the long-term they could be used to do observations at much higher frequencies than originally planned, giving us very good long-term flexibility.

Another thing that CETC54 has achieved is that we don’t have to adjust the surfaces. They’ve come up with a manufacturing technique in China and then at installation here that means it’s literally a case of just bolting the dish panels together … there’s no fine adjustment necessary here in Australia.

Given that it is such remote site, will there be people stationed there on a regular basis?

No, not for operations. Like most telescopes these days, it can be operated by remote control from anywhere. However, with an array as big and as complex as this—36 antennae, vast data rates, these huge specialised digital systems—it really is a dramatic step forward. The telescope is about a factor of 10 more powerful than any other radio telescope in the world. So regular maintenance will be required to keep the system up and running, and there will be people going out to the site to do that.

The road to ASKAP

ASKAP is being built in one of the remotest parts of the world, 350 kilometres inland from Geraldton in Western Australia.

Finally, from a personal standpoint, what’s it like to be out there in the WA desert? The conditions must be pretty challenging.

Many telescopes are built in remote sites, but mostly they’re built where there’s already some level of infrastructure. For us working out at Boolardy Station, you have to bring in absolutely everything. You know intellectually that that’s true, but nonetheless on the day when you realise you really do need that special screwdriver, you find it is 350km away! It’s one of those classics where you know philosophically how to do something, and you think you’ve got it covered…but boy, there really is no give and take on that.

Summers out there are pretty warm. We’ve managed to move schedules around to deal with that, and it’s quite manageable; it’s just a case of thinking things out sensibly. We’ve worked a lot with regional contractors in WA who are experienced at this and we’ve shifted our mindset to suit the climate.

The wildlife situation reminds us that we’re living in Australia. The numbers of kangaroos, emus, goannas and snakes, has been quite impressive. Snakes in particular are the most dangerous local wildlife, but we’ve got good procedures in place to deal with them.

Story by Jonathan Nally, SpaceInfo.com.au. Images courtesy CASS / Terrace Photographers / Paul Bourke and Jonathan Knispel (Supported by WASP (UWA), iVEC, ICRAR, and CSIRO).

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Milestone as radio dishes linked

ASKAP antennae

Antennae of CSIRO's Australian SKA Pathfinder (ASKAP) telescope in Western Australia were linked with other dishes across Australasia to provide incredible detail of a distant quasar. Photo: Terrace Photographers

THE DISCOVERY POTENTIAL of the future international Square Kilometre Array (SKA) radio telescope has been glimpsed following the commissioning of a working optical fibre link between CSIRO’s Australian SKA Pathfinder (ASKAP) telescope in Western Australia, and other radio telescopes across Australia and New Zealand.

The achievement will be announced at the 2011 International SKA Forum, taking place this week in Banff, Canada.

On 29 June, six telescopes—ASKAP, three CSIRO telescopes in New South Wales, a University of Tasmania telescope and another operated by the Auckland University of Technology—were used together to observe a radio source that may be two black holes orbiting each other.

Data from all sites were streamed in real time to Curtin University in Perth  (a node of the International Centre for Radio Astronomy Research) and there processed to make an image.

This ability to successfully link antennae (dishes) over large distances will be vital for the future $2.5 billion SKA telescope, which will have several thousand antennae, up to 5,500 kilometres apart, working together as a single telescope. Linking antennae in such a manner allows astronomers to see distant galaxies in more detail.

Map of antennae across Australia and New Zealand

The network of radio telescope dishes stretched across Australia and New Zealand. Image: Carl Davies, CSIRO

“We now have an SKA-scale network in Australia and New Zealand: a combination of CSIRO and NBN-supported fibre and the existing AARNET and KAREN research and education networks,” said SKA Director for Australasia, Dr Brian Boyle.

Watching as black holes feed

The radio source the astronomers targeted was PKS 0637-752, a quasar that lies more than seven and a half billion light-years away from us.

This quasar emits a spectacular radio jet with regularly spaced bright spots in it, like a string of pearls. Some astronomers have suggested that this striking pattern is created by two black holes in orbit around each other, one black hole periodically triggering the other to ‘feed’ and emit a burst of radiation.

Radio image of a quasar

The radio dish network was used to zoom in on quasar PKS0637-752, at the heart of which is thought to be two black holes circling each other. ATCA image: L. Godfrey (Curtin Uni.) and J. Lovell (Uni. of Tasmania). Image from telescope network: S. Tingay (Curtin Uni.) et al.

‘It’s a fascinating object, and we were able to zoom right into its core, seeing details just a few millionths of a degree in scale, equivalent to looking at a 10-cent piece from a distance of 1,000 kilometres,’ said CSIRO astronomer Dr Tasso Tzioumis.

During the experiment Dr Tzioumis and fellow CSIRO astronomer Dr Chris Phillips controlled all the telescopes over the Internet from Sydney.

Curtin University’s Professor Steven Tingay and his research team built the system used to process the telescope data. “Handling the terabytes of data that will stream from ASKAP is within reach, and we are on the path to the SKA,” he said.

“For an SKA built in Australia and New Zealand, this technology will help connect the SKA to major radio telescopes in China, Japan, India and Korea.”

AARNet, which provides the data network for Australia’s research institutions, has recently shown that it can implement data rates of up to 40 Gbps on existing fibre networks. That figure is for a single wavelength, and one fibre can support up to 80 wavelengths.

Adapated from information issued by CSIRO Astronomy and Space Science.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Aboriginal community names CSIRO telescope

One of the ASKAP dishes

One of the ASKAP dishes at the Murchison Radio-astronomy Observatory in Western Australia. The first six dishes (of an eventual 36) have been given indigenous names.

THE FIRST SIX ANTENNAE of CSIRO’s Australian SKA Pathfinder telescope in Western Australia have today received names in the local Wajarri language.

The names, chosen by the Wajarri people, were bestowed by representatives of seven Aboriginal families at a ceremony at the Murchison Radio-astronomy Observatory, about 315 km northeast of Geraldton.

Name plaques will be fixed to each antenna. Further naming will take place as more antennae are installed and eventually all 36 of ASKAP’s antennae will have a Wajarri name.

The antenna names are: Bilyarli (which means “galah”, and is also the name of a past Wajarri Elder, Mr Frank Ryan); Bundarra (stars); Wilara (the Moon); Jirdilungu (the Milky Way); Balayi (a lookout, as this antenna looks down westward to others); and Diggidumble (a nearby table-top hill).

Antony Schinckel

CSIRO ASKAP Director, Antony ("Ant") Schinckel has been named "Minga", the Wajarri name for "ant".

“These names will be a permanent reminder that this is the land of the Wajarri people,” said the Chair of Wajarri Yamatji Native Title Group, Gavin Egan.

Roads and other significant structures will also be given Wajarri names.

One of the roads will be called Ngurlubarndi, the Wajarri name for Fred Simpson, a past Wajarri Elder and father of Wajarri Elder, Ike Simpson.

CSIRO’s ASKAP Director, Antony (“Ant”) Schinckel has also been given a Wajarri name—”Minga”, which means “ant”.

In March CSIRO awarded McConnell Dowell Constructors (Aust) Pty Ltd the contract to construct support infrastructure at the Murchison Radio-astronomy Observatory.

The work involves the construction of several kilometres of access roads and tracks, power and data distribution, a central control building, and foundation pads for the rest of the 36 antennae that will be installed on the site by early 2012.

The MRO is located in the Mid West region of Western Australia. As well as being home to ASKAP, it is also the Australia–New Zealand candidate core site for the future $2.5bn Square Kilometre Array (SKA) telescope project.

Adapted from information issued by CSIRO. Images courtesy Tim Wheeler and Terrace Photographers.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…