RSSAll Entries Tagged With: "accretion disc"

Some stars have split personalities

USING THE NEW CAPABILITIES of the upgraded Karl G. Jansky Very Large Array (VLA) radio telescope system, scientists have discovered previously-unseen companions to a pair of very young protostars. The discovery gives strong support for one of the competing explanations for how double-star systems form.

Astronomers know that about half of all Sun-like stars are members of double or multiple-star systems, but have debated over how such systems are formed.

artist's impression shows a disc of dust and gas surrounding a star

This artist’s impression shows a disc of dust and gas surrounding a star that is still in the process of formation. Evidence suggests that such discs sometimes split, leading to the formation of two or more stars. Image courtesy ESO / L. Calçada.

“The only way to resolve the debate is to observe very young stellar systems and catch them in the act of formation,” said John Tobin, of the National Radio Astronomy Observatory (NRAO). “That’s what we’ve done with the stars we observed, and we got valuable new clues from them,” he added.

Their new clues support the idea that double-star systems form when a flat cloud, called a disc, of gas and dust whirling around one young stars splits, forming another new star in orbit with the first. Astronomers call it the disc fragmentation model.

Fits the model

When Tobin and an international team of astronomers studied gas-enshrouded young stars roughly 1,000 light-years from Earth, they found that two had previously-unseen companions in the plane where their discs would be expected. One of the systems also clearly had a disc surrounding both young stars.

“This fits the theoretical model of companions forming from fragmentation in the disk,” Tobin said. “This configuration would not be required by alternative explanations,” he added.

Aerial view of VLA dishes in a Y-shape

Dishes of the Karl G. Jansky Very Large Array. NRAO image.

The new observations add to a growing body of evidence supporting the disc-fragmentation idea. In 2006, a different VLA observing team found an orbiting pair of young stars, each of which was surrounded by a disc of material. The two discs, they found, were aligned with each other in the same plane. Last year, Tobin and his colleagues found a large disc forming around a protostar in the initial phases of formation. This showed that discs are present early in the star formation process, a necessity for binary pairs to form through disc fragmentation.

“Our new findings, combined with the earlier data, make disc fragmentation the strongest explanation for how close multiple star systems are formed,” said Leslie Looney of NRAO and the University of Illinois.

Adapted from information issued by NRAO.

Get daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Stellar cannibal hides it age well

Artist's impression of the star BP Piscium

Artist's impression of the star BP Piscium. Astronomers think it has eaten another star, with the leftover material forming a surrounding gas and dust cloud, within which new planets might form. Some of the leftover stuff is being shot out in "jets" from near the poles of the star.

  • Young looking star is actually probably quite old
  • Seems to have recently devoured a companion star
  • Leftover crumbs could be forming into planets

An astronomer may have caught a cannibalistic star in the act of devouring a companion and making a new generation of planets from the resulting cloud of leftover crumbs.

Using data from NASA’s Chandra X-ray Observatory, Joel Kastner, professor at Rochester Institute of Technology (RIT), has found evidence that a star in the constellation of Pisces—called BP Piscium, or BP Psc for short—is not the young star it appears to be, but is more likely a one billion-year-old red giant that has gobbled up a star or planet in its vicinity.

The star’s extreme properties have puzzled astronomers since Kastner and Ben Zuckerman, professor at the University of California, Los Angeles, first looked at BP Psc 15 years ago. The star is about 1,000 light-years from Earth.

False-colour image of BP Piscium

False-colour image of BP Piscium, put together using X-ray and optical wavelength observations. The two jets blasting out of the star are several light-years long.

Conflicting characteristics have caused confusion as to whether the star is young or old.

Kastner attributes the star’s potentially deceptive youthful appearance to two things: an surrounding cloud of gas and dust that resembles the sort that forms planets around young stars; and prominent “jets” extending from the poles of the star that eject material at high velocity.

A typical young star sucks in material from the surrounding cloud, incorporating about 90 percent of the material and spitting out the rest through jets or geysers shooting out in opposite directions.

Kastner and his colleagues were doubtful about the youth of the star. For one thing, the star is isolated, whereas most young stars form in clusters.

“As hard as people have looked, they have not been able to find [another] young star near BP Psc,” says Kastner, a professor in RIT’s Chester F. Carlson Centre for Imaging Science. “That was one of several things that made Ben [Zuckerman] and me suspect that it wasn’t actually young.”

Second, this enigmatic star in the Pisces constellation lacks the large abundance of lithium on its surface that is typical of young stars. Older stars lose their lithium in nuclear reactions when mixing and churning folds the gases into the centre of the star. According to Kastner, other key spectral features involving the star’s radius and surface gravity also point to the star’s advanced age.

Stellar cannibalism

Kastner is ready to close the debate with data obtained from the Chandra X-ray Observatory.

“The last piece of evidence, which, to me, is the nail in the coffin that BP Psc is old rather than young, is that its rate of X-ray production is very similar to old, yet rapidly spinning, giant stars that have surface temperatures similar to BP Psc,” Kastner says.

If BP Psc were a young star, it would emit X-rays in the hundreds, even up to a few thousand, in a day’s observing time with Chandra, Kastner notes. Instead, it is a weak X-ray source.

Artist's impression of the Chandra X-ray Observatory.

Artist's impression of NASA’s Chandra X-ray Observatory.

“We stared at BP Psc for one day with Chandra and only detected about 18 X-rays,” Kastner says. “We could almost name them.”

The rate of X-rays coming from the star are in keeping with a class of rapidly rotating old stars having similar temperature to BP Psc, Kastner says. This class is thought to be the result of one star swallowing another close companion star.

“Our working speculation is that we are observing the star right at the point at which it has swallowed its companion and hence formed a [surrounding cloud from the leftover bits],” Kastner says. “Some of the material that used to be its companion has fallen onto the star and some has been shot out at high speeds, and that’s what we’re seeing.”

The enigmatic star is likely about a billion years old and just entering the red giant stage in its life cycle in which it swells to digest its star or planet companion.

“It could be a small star or a large planet,” Kastner says. “We don’t know which it could be, but we’re very interested in finding out.”

“In order to understand the extrasolar planets that are now being discovered by the dozen, we need to figure out how planets might be forming and therefore where we should go look for them,” Kastner says. “I think this object is especially interesting because it gives us a good shot at finding young planets around an old star.”

Image credits: (X-ray) NASA / CXC / RIT / J. Kastner et al; (optical) UCO / Lick / STScI / M. Perrin et al; (illustration) CXC / M. Weiss.

Get daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz