RSSArchive for January, 2014

Weekly space gallery for January 28, 2014

WELCOME TO OUR WEEKLY COLLECTION of the best astronomy and space exploration images taken by observatories around the world and in space. Each week we’ll bring you a selection of our favourite recent images – if you like them (and we hope you do), please share them with your friends. And don’t forget you can elect to have this and other stories emailed direct to your inbox, just by signing up to our free email service – see the Subscribe box in the column at right.

So, let’s get started on this week’s images.

1. Disruptive black hole

A black hole lives at the heart of the white galaxy in the middle of this image. Extensive clouds of hot gas, detected by NASA’s Chandra X-ray Observatory satellite and coloured purple, should be the raw material from which countless new stars would be born. But jets of energy emanating from the vicinity of the black hole have disrupted the gas, forming two cavities on either side of the centre and sending out shock waves that prevent the gas from clumping and forming stars. The galaxy in question is called RX J1532+3201, and it is 3.9 billion light years from Earth. Image credit: X-ray: NASA / CXC / Stanford / J.Hlavacek-Larrondo et al, Optical: NASA / ESA / STScI / M.Postman & CLASH team.

Gas surrounding galaxy RX J1532+3201

Hot gas surrounds galaxy RX J1532+3201.

 

2. Titan, top and bottom

This black and white image of Titan, Saturn’s largest moon, was taken through a special infrared filter to bring out detail in its atmosphere. Visible at the far north (top) is a haze that stands up above the bulk of atmosphere, while near the south pole is the South Polar Vortex – thought to be an uplifted mass of air caused by a change in the seasons. This image was taken by NASA’s Cassini spacecraft from a distance of 2.5 million kilometres. Cassini has been orbiting Saturn since 2004. Courtesy NASA / JPL-Caltech / Space Science Institute.

Titan

Haze is visible in Titan’s north, while a polar vortex is in the south.

 

3. Brown dwarf revealed

Astronomers have used special techniques to block out the light of a star (leaving a speckled appearance) to reveal a dim brown dwarf that is in orbit around it. Brown dwarfs are bodies at are two big to be planets, but two small to be proper stars. They give off a relatively small amount of heat. The astronomers are particularly interested in studying the brown dwarf’s atmosphere, by analysing the light that reflects from it. “This object is old and cold and will ultimately garner much attention as one of the most well-studied and scrutinised brown dwarfs detected to date,” says Justin R. Crepp of the University of Notre Dame. “With continued follow-up observations, we can use it as a laboratory to test theoretical atmospheric models. Eventually we want to directly image and acquire the spectrum of Earth-like planets. Then, from the spectrum, we should be able to tell what the planet is made out of, what its mass is, radius, age, etc., basically all relevant physical properties.” Courtesy Crepp et al. 2014, ApJ.

Brown dwarf image

By blocking most of the light of its parent star, a faint brown dwarf is revealed.

 

4. A gallery of galaxies

The Hubble Space Telescope was used to make this long-exposure image of the galaxy cluster Abell 2744, which comprises the bright galaxies in the foreground. Fainter background galaxies appear to have become distorted as their light is bent by Abell 2744’s gravity. Astronomers have counted up to 3,000 of these background galaxies in the full-size version of this image alone. Courtesy NASA / ESA.

Galaxy cluster Abell 2744

A long Hubble exposure of galaxy cluster Abell 2744 also reveals other galaxies in the far background.

 

5. We have lift-off

NASA’s newest Tracking and Data Relay System Satellite (TDRSS) was launched on January 23 from the Kennedy Space Centre in Florida. There are several TDRSS satellites circling Earth, through which NASA can communicate with spacecraft in Earth orbit. They are not directly involved in communicating with deep space missions. Courtesy NASA / Tony Grey.

Time exposure of TDRSS launch

Lift off of NASA’s latest TDRSS satellite.

 

6. A supernova surprise

A supernova was spotted in galaxy M82 on January 21, causing great excitement amongst astronomers. M82 is only 12 million light years from Earth, making the supernova (called SN 2014J) one of the closest in many years. Many observatories broke into their normal scheduled operations to make observations of the supernova, including NASA’s Swift orbiting observatory. This picture, sensitive to ultraviolet light, shows the supernova standing out brightly against the amorphous background of the rest of M82. Courtesy NASA / Swift / P. Brown, TAMU.

Swift image of galaxy M82 and its supernova

A Swift image of galaxy M82 and its supernova.

Story by Jonathan Nally.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Weekly space gallery for January 18, 2014

WELCOME TO THE FIRST of our weekly collections of the best astronomy and space exploration images taken by observatories around the world and in space. Each week we’ll bring you a selection of our favourite recent images – if you like them (and we hope you do), please share them with your friends. And don’t forget you can elect to have this and other stories emailed direct to your inbox, just by signing up to our free email service – see the Subscribe box in the column at right.

So, let’s get started on this week’s images.

1. The Orion Nebula

Orion Nebula

An infrared view of the Orion Nebula.

One of the most famous sights in the sky, the Orion Nebula is a huge cloud of gas and dust about 1,500 light-years from Earth. Astronomers call it a ‘stellar nursery’ because many stars have been born, or are in the process of being born, out of all that gas and dust. See all the tiny red dots? Those are newly born stars. This false-colour image was taken by NASA’s Spitzer Space Telescope, which views the universe at infrared wavelengths. Courtesy NASA.

2. The Coma Cluster

Coma Cluster

The Coma Cluster of galaxies.

Galaxies tend to clump together in groups, or clusters. Some clusters comprise only a handful of galaxies, others have more than a thousand. The Coma Cluster – so-called because it is seen in the direction of the constellation Coma Berenices, which means ‘Berenice’s Hair’ (named after an ancient Egyptian queen) – is located about 350 million light years from Earth. Most of its 1,000-plus galaxies are elliptical (one of the two main galaxy shapes, the other being spiral). Pretty much all of the dots and blobs of light you can see in this Hubble Space Telescope image are galaxies; the three main ones are called IC 4041 (left), IC 4042 (middle) and GP 236 (right). The Coma Cluster is itself part of a larger grouping that also contains the Leo Cluster, and is called the Coma Supercluster. Courtesy ESA / Hubble & NASA; D. Carter (LJMU).

3. The Topsy Turvy galaxy

Topsy Turvy galaxy

The Topsy Turvy galaxy, with X-ray emission from regions surrounding two black holes shown in purple.

The Topsy Turvy galaxy (also known by its catalogue number, NGC 1313) is located about 13 million light years from Earth. Hidden within it are two black holes, whose presence is given away – where the purple patches are (false colour) – by energetic X-rays coming from gas being siphoned from companion stars. The X-ray data comes from NASA’s NuSTAR space telescope, while the background image is from the Digitised Sky Survey (made from pictures taken by ground-based telescopes). Courtesy NASA / JPL-Caltech / IRAP.

4. Planets in the dust

Dust ring around the star HD 142527

Dust around the star HD 142527 could be giving birth to planets.

Japanese astronomers have been studying a star called HD 142527, about 450 light years Earth. HD 142527 is a young star, surrounded by a huge, slightly lop-sided ring of gas and dust. The astronomers say that a dense spot in the ring is where planets could be forming. (Due to the wavelength used, the star is not visible in this image.) Courtesy ALMA (ESO/NAOJ/NRAO), NAOJ.

5. The Tarantula Nebula

The Tarantula Nebula

The Tarantula Nebula

The Tarantula Nebula is a huge cloud of gas and dust in the Large Magellanic Cloud, a neighbouring galaxy to our Milky Way. This Hubble Space Telescope infrared view shows cloudy whisps and many thousands of sparkling stars. Just to the left of centre is a tight group of stars known as R136. In early photographs, R136 seemed to be a single, giant star, and no one could work out how a star could grow to be so big. But eventually better imaging revealed it to be a cluster of stars – so many and so bright, that the light the emit is the main reason why the Tarantula’s gas and dust is all lit up. Courtesy NASA, ESA, E. Sabbi (STScI).

6. Looking down on Venus

South pole view of Venus.

The view looking down on Venus’ southern polar regions.

This black and white image of Venus was taken by the European Space Agency’s Venus Express spacecraft, which has been orbiting the planet since April 2006. The viewpoint is looking down on the south pole from an altitude of 50,000 kilometres. Venus is perpetually covered by thick clouds, but Venus Express’ instruments can pick out bands within those clouds, which are being blown by the prevailing winds from east to west (the opposite to winds here on Earth). The small black blobs are not real; they are artefacts of the imaging equipment. Courtesy ESA / MPS / DLR / IDA.

7. Rima Marius

Rima Marius

Rima Marius stretches 280 kilometres across the Moon.

Rima Marius is a lunar ‘rille’ or channel. Such channels are thought to form when a tunnel through which lava once flowed, collapses in on itself. Rima Marius is 280 kilometres long, winding its way across a flat plain known as the Oceanus Procellarum, or Ocean of Storms. This image was taken by NASA’s Lunar Reconnaissance Orbiter spacecraft. Courtesy NASA / GSFC / Arizona State University.

8. Tracks on Mars

Orbital shot showing tracks left by the Curiosity rover

An orbital shot showing tracks left by the Curiosity rover on Mars.

NASA’s Mars Reconnaissance Orbiter snapped this image of the martian surface on December 11, 2013. It clearly shows the tracks left by the Curiosity rover as it slowly makes it way across the floor of Gale Crater (the rover itself is out of frame). The rover has six wheels, three on each side; the distance between left and right wheels is about 3 metres. See if you can follow the tracks all the way from top right to bottom left. Courtesy NASA / JPL-Caltech / Univ. of Arizona.

9. Shadows on Saturn

Saturn

The shadows of Saturn’s rings cast upon the planet’s cloud tops.

Shadows cast by Saturn’s rings make the planet look like it has been painted with Indian ink while spinning on a potter’s wheel. The rings themselves are out of view in this image, taken by NASA’s Cassini spacecraft, which has been orbiting Saturn since 2004. Courtesy NASA / JPL-Caltech / Space Science Institute.

10. Docking at the Station

Cgynus craft docked at the International Space Station

Cgynus cargo craft docked at the International Space Station

Orbital Sciences Corporation’s Cygnus commercial cargo spacecraft is seen docked to the Harmony module of the International Space Station. Attached is the Station’s robot arm, called Canadarm2 (being the second generation of robot arm supplied by Canada). The Cygnus craft was launched aboard an Antares rocket on January 9. Courtesy NASA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

VIDEO: NASA tests parachutes for Orion spacecraft

NASA IS DEVELOPING A NEW crewed spacecraft called Orion… otherwise known as ‘Apollo on steroids’ because it looks like a bigger version of the spacecraft that took astronauts to the Moon.

Just like the Apollo command module, Orion will carry a heat-shield to protect it during re-entry into Earth’s atmosphere, and huge parachutes to bring it down to a soft landing.

NASA has been conducting a series of tests to make sure the parachute system will work properly.

The first video shows a test that was conducted last year, where an Orion mock-up was dropped from the back of a military cargo aircraft to see how well its parachutes would work. There are several ‘layers’ of parachutes, each designed to slow the craft down in stages and then help to pull out the bigger parachutes. Towards the end of the test, one of the three main chutes was deliberately cut loose to see how well the system would perform on just the remaining two chutes. See what happened…

Complete success!

The second video shows a more recent test of the system that will release a cover that protects the parachutes. We say release, but it’s more like a blast, as the cover is propelled upwards by small rocket thrusters and into a safety net. Take a look…

Orion is due to start taking US astronauts into orbit toward the end of this decade. But a first test flight into space will be conducted later this year, when an uncrewed test craft will be shot into a high orbit, from which it will then re-enter the atmosphere at great speed to test the heat-shield.

Story by Jonathan Nally. Videos courtesy of NASA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

GALLERY: Black holes galore

AN ASSORTMENT OF BLACK HOLES lights up a new image from NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR. Although the coloured blobs might not look like much, every one of them is a black hole located inside the hearts of a galaxy.

The different colours represent different energies of X-ray light. The red, yellow and green colours represent black holes seen previously by NASA’s Chandra X-ray Observatory (with red denoting the lowest-energy X-ray light). The colour blue shows black holes recently detected by NuSTAR, which is uniquely designed to detect the highest-energy X-ray light.

Image showing X-ray emission from black holes

Every one of the blobs you can see here, represents the location of a black hole. Although black holes cannot be directly seen, the X-ray light given off by hot gas in the vicinity can – and that’s what we see here; X-ray emission detected by the Chandra and NuSTAR space observatories.

The black holes in this picture are between about 3 to 10 billion light-years away.

The X-rays aren’t coming from the black holes themselves, since nothing can escape the gravitational grip of a black hole. Rather, they are coming from hot gas in the vicinity of the black holes.

Why do some black holes produce more high-energy X-ray light than others? Astronomers say this is because the black holes are more actively feeding off surrounding clouds of dust and gas – a process which heats up the gas and makes it emit X-rays.

The image shows an area, called the COSMOS field, that has been studied in great detail by many telescopes (COSMOS stands for Cosmic Evolution Survey). Red and green represent X-ray light seen by Chandra. Blue is for the kind of X-ray light that can only be seen by NuSTAR.

Adapted from information issued by NASA / JPL-Caltech / Yale University.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Testing the time travellers

IT STARTED OVER A POKER GAME. Astrophysicist Robert Nemiroff and his students were playing cards (for chips) last summer, chatting about Facebook. They wondered: If there were time travellers among us, would they be on social media? How would you find them? Could you Google them?

“We had a whimsical little discussion about this,” said Nemiroff, a professor at Michigan Technological University. The result was a fun-but-serious effort to tease out travellers visiting from the future by sifting through the Internet. Unfortunately, they have not uncovered any DeLorean time machines, but that hasn’t made the search less interesting.

You can’t just put out a cattle call for time travellers and expect good results. So Nemiroff’s team developed a search strategy based on what they call prescient knowledge. If they could find a mention of something or someone on the Internet before people should have known about it, it could indicate that whoever wrote it had travelled from the future.

Screen shot of the Time Traveller twitter screen

Requests for time travellers to make themselves known on Twitter, went unanswered.

They selected search terms relating to two recent phenomena, Pope Francis and Comet ISON, and began looking for references to them before they were known to exist. Their work was exhaustive: they used a variety of search engines, such as Google and Bing, and combed through Facebook and Twitter. In the case of Comet ISON, there were no mentions before it burst on the scene in September 2012. They discovered only one blog post referencing a Pope Francis before Jorge Mario Bergoglio was elected head of the Catholic Church on March 16, but it seemed more accidental than prescient.

They also searched for prescient inquiries submitted to search engines and combed through the Astronomy Picture of the Day site, which Nemiroff co-edits. Still no luck.

For their last and perhaps most ingenious effort, the researchers created a post in September 2013 asking readers to email or tweet one of two messages on or before August 2013: “#ICanChangeThePast2” or “#ICannotChangeThePast2.” Alas, their invitation went unanswered. And, they received no insights into the inherent contradictions of time travel.

“In our limited search we turned up nothing,” Nemiroff said. “I didn’t really think we would. But I’m still not aware of anyone undertaking a search like this. The Internet is essentially a vast database, and I thought that if time travellers were here, their existence would have already come out in some other way, maybe by posting winning lottery numbers before they were selected.”

Nemiroff, who normally publishes on more arcane subjects, such as gravitational lensing and gamma-ray bursts, says this recent endeavour is not as big a stretch for him as some might think. “I’m always doing stuff on space and time,” he said, adding, “This has been a lot of fun.”

Adapted from information issued by Michigan Technological University.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

GALLERY: Solar blast

A CORONAL MASS EJECTION, or CME, has been spotted erupting away from the Sun, in images taken by the Solar and Heliospheric Observatory (SOHO) spacecraft.

According to the SOHO web site, a CME is a “huge magnetic bubble of plasma that erupts from the Sun’s corona and travels through space at high speed.” Plasma is gas that has been ” heated to sufficiently high temperatures that the atoms ionise”.

When a CME occurs, the plasma shoots out into space and travels through the Solar System. If the timing is right (or wrong, depending on your point of view), a CME can head directly toward Earth.

The first image is a wide field, showing the CME in action on January 14, 2014. The Sun has been blocked out in order to show detail in its outer atmosphere. (The white circle shows the size of the Sun – 1.4 million kilometres, or 870,00 thousand miles, in diameter.) The bright point of light in the top right is the planet Venus. (The white flare on either side of Venus is not real; it is an artifact of the imaging process.)

The second image shows a slightly narrower field, again with the Sun blocked out.

SOHO coronograph image of a CME

A SOHO image of a coronal mass ejection spotted on January 14, 2014. The bright spot in the upper right corner is the planet Venus.

SOHO coronograph image of a CME

Another SOHO view of the January 14, 2014 coronal mass ejection.

SOHO orbits the Sun at a special location between the Sun and the Earth called the L1 Lagrange point. At this location, the gravity of the Sun and Earth balances out, enabling the spacecraft to circle the Sun while always staying on a line between Earth and Sun. It is owned and operated jointly by NASA and the European Space Agency.

Adapted from information issued by NASA and ESA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Lone star has two planets

A NEW GIANT PLANET has been located in a star system about 250 light-years from Earth. The planet, perhaps twice the mass of Jupiter, could help researchers learn more about how extrasolar planets are formed.

An extrasolar (‘beyond the Solar System’) planet is one that belongs to a star system other than our own.

The star system harbouring the new planet contains only one star, as do the other three systems with extrasolar planets analysed by San Francisco State University astronomer Stephen Kane, an assistant professor of physics and astronomy, and his colleagues. It is a surprising finding, given the high rate of multiple-star systems in our solar neighbourhood.

“There is a great interest in these stars that are known to host planets,” Kane explained, since astronomers suspect that planet formation in a multi-star system would be very different from planet formation in a single-star system like our own.

False-colour image of star HD 4230

This false-colour image shows the star HD 4230, located about 250 light-years from Earth. Measurements indicate the presence of two, unseen, planets orbiting it.

A multiple-star system “might have not one but two” flattened clouds, called discs, where planets form, he said. “Or it could be that having an extra star would be disruptive, and its gravity could cause any protoplanets to pull apart.”

Relatively few extrasolar planets have been found in multiple-star systems, “but we know that they are there,” Kane said.

A wobbling star

In the four systems studied by the researchers, using optical imaging data collected at the Gemini North observatory in Hawaii, there were some intriguing signs that perhaps a second star – or something else – was present.

In each system, the extrasolar planets were discovered by the radial velocity technique, which measures variations in the speed at which a star moves away and toward Earth, “wobbled” by the gravitational pull of a nearby cosmic body. Depending on the radial velocity signature, astronomers can calculate whether the wobble is coming from a planet or star.

In the star systems studied by Kane and his colleagues, there was a part of the radial velocity data that couldn’t be explained entirely by the pull of an orbiting planet. And at the same time, the planets that had already been discovered in these systems followed eccentric orbits, swinging away from their stars in a less circular and more elliptical fashion, “more like that of a comet,” Kane said.

An unexplained velocity

With these two clues, the researchers wondered if the radial velocity and eccentric orbits might be explained by the presence of another star in the system. But when they took a closer look at the systems, they were able to rule out the possibility that another star was perturbing the system.

Depiction of planetary orbits around HD 168443

The two solid circles marked b and c, depict the orbits of planets circling HD 168443, one of the stars studied by Stephen Kane and his colleagues. The dashed circles represent the size of the orbits of Mercury, Venus Earth and Mars in our Solar System.

“I thought we were likely to find stellar companions, and when all four didn’t have a binary star, that did surprise me,” Kane said.

But in the case of one star, HD 4230, the unexplained radial velocity appears to be coming from the pull of a previously undiscovered giant planet, the researchers report. They confirmed the planet’s presence with additional radial velocity data collected at Hawaii’s Keck observatory.

Given that the researchers did not find any stellar companions, Kane says it is very likely that the leftover radial velocity is instead a signal that there are additional planets to be found in all four systems. The researchers feel this is especially true for the system called HD 168443, where their ability to detect a companion star was very strong.

Adapted from information issued by San Francisco State University.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

Australian astronomer wins prestigious award

THE 2014 GROTE REBER MEDAL for innovative and significant contributions to radio astronomy has be awarded to Professor Ron Ekers of Australia. Professor Ekers was the Foundation Director of CSIRO’s Australia Telescope National Facility at Narrabri, and is a former director of the Very Large Array in New Mexico, USA, operated by the National Radio Astronomy Observatory (NRAO).

He is currently a CSIRO Fellow at the Australia Telescope National Facility (ATNF), CSIRO Division of Astronomy and Space Science in Australia, and Adjunct Professor at Curtin University in Perth and the Raman Research Institute in Bangalore, India.

Headshot of Ron Ekers

Professor Ron Ekers

The Grote Reber Medal is named after a pioneer of radio astronomy (see below).

Ekers is being recognised for his many pioneering scientific radio astronomy investigations, which extend over half a century. Working with various colleagues, Ekers studied galaxies, made precise measurements of the way the Sun’s gravity deflects radio waves, made some of the first high-resolution images of the centre of the Galaxy at radio wavelengths, and critical early observations of pulsars.

More recently he is leading a project to detect radio emission resulting from ultra high-energy neutrino interactions with the Moon.

Ekers also played a key role in developing what was probably the first interactive computer language for analysing radio astronomy images. In the mid-1990s he became the strongest force in advocating support for the international Square Kilometre Array initiative.

“Over a career lasting nearly half a century Ron Ekers has worked in almost every area of radio astronomy. As a strong believer in international collaboration, he was the earliest advocate for the Square Kilometre Array, and perhaps, more than anyone else, he was responsible for building the current level of international support for the SKA”, said Dr Ken Kellermann of the NRAO.

“Ron is the complete internationalist and has contributed significantly to the major radio astronomy instruments in Europe, the US and Australia,” said Dr David Jauncey, CSIRO Astronomy and Space Science Affiliate and ANU Visiting Fellow.

The medal will be presented to Professor Ekers during the 31st General Assembly of the International Union of Radio Science to be held in Beijing, China in August, 2014.

About Grote Reber

Grote Reber was born on 22 December 1911. Before he was 30 years of age, he became the world’s first radio astronomer. In 1937, constructed the world’s first purpose-built radio telescope, adjacent to his home in Wheaton, Illinois, just west of Chicago. Reber’s telescope was the forerunner of the classic design of the world’s famous radio telescopes (including the famous ‘dish’ at Parkes, in Australia). The same principle is used widely today in many other applications, including satellite dishes in private homes.

Reber used his telescope to make the first detailed radio map of the sky. “His work was a huge step forward for astronomy”, said Martin George, Administrator of the Grote Reber Medal. “For the first time, the Universe was being studied at wavelengths other than those visible to our eyes.”

Grote Reber using radio equipment

Grote Reber

In 1954, Reber moved to Tasmania, Australia, where he began observing at very much longer wavelengths using a quite different type of ‘telescope’: an array of dipoles, which took the form of antennas strung between the tops of poles.

Reber constructed an array that covered an area of one square kilometre. Although now dismantled, in terms of collecting area it still holds the record for the world’s largest single radio telescope ever constructed.

Although Reber’s research and ideas often fell outside the mainstream activities of other astronomers, his contributions, especially in the early days of radio astronomy, were both pioneering and critically important. He was awarded a number of prizes and an honorary Doctor of Science Degree from Ohio State University in the USA.

“Grote Reber’s achievements showed, most importantly, that one person can make a difference”, said Dr David Jauncey.

Grote Reber died in Tasmania on 20 December 2002, two days before his 91st birthday.

Adapted from information issued by Trustees of the Grote Reber Foundation. Ron Ekers and ATCA photos courtesy of CSIRO Astronomy and Space Science. Grote Reber photo courtesy NRAO.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…

2014 astronomy and space calendars

IT’S NOT TOO LATE to grab one of these beautiful 2014 astronomy and space exploration calendars. We’ve selected more than 20 of the best from around the world. From Hubble’s latest images, to planets, deep space nebulae, aurorae (northern and southern lights), and even one from astronauts aboard the space station (a crew that included the pop star of astronomers, Canadian Chris Hadfield). They’re all available right now through the SpaceInfo Shop at www.spaceinfo.com.au/astrocalendars.html

Montage of space calendars

All over these calendars are available now from the SpaceInfo Shop – www.SpaceInfo.com.au

A stellar dust factory

STRIKING NEW OBSERVATIONS with the Atacama Large Millimetre/submillimetre Array (ALMA) telescope capture, for the first time, the remains of a recent supernova brimming with freshly formed dust. If enough of this dust makes the perilous transition into interstellar space, it could explain how many galaxies acquired their dusty, dusky appearance.

Cosmic dust consists of silicate and graphite grains – minerals also abundant on Earth. The soot from a candle is very similar to cosmic graphite dust, although the size of the grains in the soot are ten or more times bigger than typical grain sizes of cosmic graphite grains.

This image shows the remnant of Supernova 1987A

This image shows the remnant of Supernova 1987A seen in light of very different wavelengths. ALMA data (in red) shows newly formed dust in the middle of the remnant. Hubble Space Telescope (in green) and Chandra Space Observatory (in blue) data show the expanding shock wave. Credit: ALMA (ESO/NAOJ/NRAO) / A. Angelich. Visible light image: the NASA/ESA Hubble Space Telescope. X-Ray image: The NASA Chandra X-Ray Observatory

Galaxies can be remarkably dusty places and supernovae – exploded stars – are thought to be a primary source of that dust, especially in the early universe. But direct evidence of a supernova’s dust-making capabilities has been slim up to now, and could not account for the copious amount of dust detected in young, distant galaxies. But now observations with ALMA are changing that.

An international team of astronomers used ALMA to observe the glowing remains of Supernova 1987A, which is in the Large Magellanic Cloud, a dwarf galaxy orbiting the Milky Way about 160,000 light-years from Earth. SN 1987A is the closest observed supernova explosion since Johannes Kepler’s observation of a supernova inside the Milky Way in 1604. Being far in the southern sky, it is clearly visible only from the Southern Hemisphere.

The Tarantula Nebula and its surroundings

This is an image of the Tarantula Nebula and its surroundings in the Large Magellanic Cloud galaxy, taken in 1987. Supernova 1987A is the bright star just to the right of centre. Credit: ESO

“This is the first time we’ve been able to really image where the dust has formed, which is important in understanding the evolution of galaxies,” said Remy Indebetouw, an astronomer at the National Radio Astronomy Observatory (NRAO) and the University of Virginia, both in Charlottesville, USA

Astronomers predicted that as the gas cooled after the explosion, large amounts of dust would form as atoms of oxygen, carbon, and silicon bonded together in the cold central regions of the remnant. However, earlier observations of SN 1987A with infrared telescopes, made during the first 500 days after the explosion, detected only a small amount of hot dust.

With ALMA’s resolution and sensitivity, the team was able to image the far more abundant cold dust, which glows brightly in millimetre and submillimetre light. The astronomers estimate that the remnant cloud now contains about 25 percent the mass of the Sun in newly formed dust. They also found that significant amounts of carbon monoxide and silicon monoxide have formed.

Aerial view of dishes of the Atacama Large Millimetre/submillimetre Array

Aerial view of dishes of the Atacama Large Millimetre/submillimetre Array (ALMA) telescope. Credit: ALMA

“SN 1987A is a special place since it hasn’t mixed with the surrounding environment, so what we see there was made there,” said Indebetouw. “The new ALMA results, which are the first of their kind, reveal a supernova remnant chock full of material that simply did not exist a few decades ago.”

There’s more information on Supernova 1987A, including an interview with Australian astronomers, on the ABC’s web site.

Adapted from information issued by NRAO.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Like this story? Please share or recommend it…