Moon’s buried treasure uncovered

  • LCROSS and LRO missions crashed into lunar south pole
  • Detected water ice plus a suite of other useful chemicals
  • Could be a good place for future lunar base

Nearly a year after announcing the discovery of water molecules on the Moon, scientists Thursday revealed new data uncovered by NASA’s Lunar CRater Observation and Sensing Satellite, or LCROSS, and Lunar Reconnaissance Orbiter, or LRO.

The missions found evidence that the lunar soil within shadowy craters is rich in useful materials, and the Moon is chemically active and has a water cycle. Scientists also confirmed the water was in the form of mostly pure ice crystals in some places.

The results are featured in six papers published in the October 22 issue of Science.

“NASA has convincingly confirmed the presence of water ice and characterised its patchy distribution in permanently shadowed regions of the Moon,” said Michael Wargo, chief lunar scientist at NASA Headquarters in Washington. “This major undertaking is the one of many steps NASA has taken to better understand our Solar System, its resources, and its origin, evolution, and future.”

The twin impacts of LCROSS and a companion rocket stage in the Moon’s Cabeus crater on October 9, 2009, lifted a plume of material that might not have seen direct sunlight for billions of years.

Artist's impression of LCROSS about to impact the Moon

Artist's impression of LCROSS studying the plume of lunar soil flung up by the impact of the spent Centaur rocket booster.

As the plume travelled nearly 15 kilometres above the rim of Cabeus, instruments aboard LCROSS and LRO made observations of the crater and debris and vapour clouds. After the impacts, grains of mostly pure water ice were lofted into the sunlight in the vacuum of space.

“Seeing mostly pure water ice grains in the plume means water ice was somehow delivered to the Moon in the past, or chemical processes have been causing ice to accumulate in large quantities,” said Anthony Colaprete, LCROSS project scientist and principal investigator at NASA’s Ames Research Centre.

“Also, the diversity and abundance of certain materials called volatiles in the plume, suggest a variety of sources, like comets and asteroids, and an active water cycle within the lunar shadows.”

Volatiles are chemical compounds that freeze and are trapped in the cold lunar craters and vaporise when warmed by the Sun. The suite of LCROSS and LRO instruments determined that as much as 20 percent of the material kicked up by the LCROSS impact was volatiles, including methane, ammonia, hydrogen gas, carbon dioxide and carbon monoxide.

Silver lining

The instruments also discovered relatively large amounts of light metals such as sodium, mercury and possibly even silver. Scientists believe the water and mix of volatiles that LCROSS and LRO detected could be the remnants of a comet impact.

According to scientists, these volatile chemical by-products are also evidence of a cycle through which water ice reacts with lunar soil grains.

LRO’s Diviner instrument gathered data on water concentration and temperature measurements, and LRO’s Lunar Exploration Neutron Detector mapped the distribution of hydrogen. This combined data led the science team to conclude the water is not uniformly distributed within the shadowed cold traps, but rather is in pockets, which may also lie outside the shadowed regions.

Location of Cabeus crater

False-colour image showing the location of the impact point in Cabeus crater.

The proportion of volatiles to water in the lunar soil indicates a process called “cold grain chemistry” is taking place. Scientists also theorise this process could take as long as hundreds of thousands of years and may occur on other frigid, airless bodies, such as asteroids; the moons of Jupiter and Saturn, including Europa and Enceladus; Mars’ moons; interstellar dust grains floating around other stars and the polar regions of Mercury.

“The observations by the suite of LRO and LCROSS instruments demonstrate the Moon has a complex environment that experiences intriguing chemical processes,” said Richard Vondrak, LRO project scientist at NASA’s Goddard Space Flight Centre. “This knowledge can open doors to new areas of research and exploration.”

By understanding the processes and environments that determine where water ice will be, how water was delivered to the Moon and its active water cycle, future mission planners might be better able to determine which locations will have easily-accessible water.

The existence of mostly pure water ice could mean future human explorers won’t have to retrieve the water out of the soil in order to use it for valuable life support resources. In addition, an abundant presence of hydrogen gas, ammonia and methane could be exploited to produce fuel.

LCROSS launched with LRO aboard an Atlas V rocket from Cape Canaveral on June 18, 2009, and used the Centaur upper stage rocket to create the debris plume. The research was funded by NASA’s Exploration Systems Missions Directorate at the agency’s headquarters. LCROSS was managed by Ames and built by Northrop Grumman. LRO was built and is managed by Goddard.

Adapted from information issued by NASA.

Get SpaceInfo.com.au daily updates by RSS or email! Click the RSS Feed link at the top right-hand corner of this page, and then save the RSS Feed page to your bookmarks. Or, enter your email address (privacy assured) and we’ll send you daily updates. Or follow us on Twitter, @spaceinfo_oz

Filed Under: AstronomyFeatured storiesNews Archive

Tags:

RSSComments (1)

Leave a Reply | Trackback URL

  1. [...] This post was mentioned on Twitter by Robert P Reibold, Jonathan Nally. Jonathan Nally said: Moon’s buried treasure uncovered http://goo.gl/fb/ZO09v [...]