The Sun in a new light

NASA’s recently launched Solar Dynamics Observatory, or SDO, has returned early images that confirm an unprecedented new capability for scientists to better understand our Sun’s dynamic processes. These solar activities affect everything on Earth.

Some of the images from the spacecraft show never-before-seen detail of material streaming outward and away from sunspots. Others show extreme close-ups of activity on the Sun’s surface.

The spacecraft also has made the first high-resolution measurements of solar flares in a broad range of extreme ultraviolet wavelengths.

“These initial images show a dynamic Sun that I had never seen in more than 40 years of solar research,” said Richard Fisher, director of the Heliophysics Division at NASA Headquarters in Washington.

“SDO will change our understanding of the Sun and its processes, which affect our lives and society. This mission will have a huge impact on science, similar to the impact of the Hubble Space Telescope on modern astrophysics.”

Solar storm watcher

Launched on February 11, 2010, SDO is the most advanced spacecraft ever designed to study the Sun. During its five-year mission, it will examine the Sun’s magnetic field and also provide a better understanding of the role the Sun plays in Earth’s atmospheric chemistry and climate.

A full-disc multi-wavelength extreme ultraviolet image of the Sun taken by SDO

A full-disc multi-wavelength extreme ultraviolet image of the Sun taken by SDO on March 30, 2010. False colours trace different gas temperatures. Reds are relatively cool (~60,000 C); blues and greens are hotter (> 1,000,000 C).

Since launch, engineers have been conducting testing and verification of the spacecraft’s components. Now fully operational, SDO will provide images with clarity 10 times better than high-definition television and will return more comprehensive science data faster than any other solar observing spacecraft.

SDO will determine how the Sun’s magnetic field is generated, structured and converted into violent solar events such as turbulent solar wind, solar flares and coronal mass ejections. These immense clouds of material, when directed toward Earth, can cause large magnetic storms in our planet’s magnetosphere and upper atmosphere.

SDO will provide critical data that will improve the ability to predict these space weather events.

The danger of space weather

Artist's impression of the Solar Dynamics Observatory in Earth orbit

Artist's impression of the Solar Dynamics Observatory in Earth orbit

Space weather has been recognised as a cause of technological problems since the invention of the telegraph in the 19th century. These events produce disturbances in electromagnetic fields on Earth that can induce extreme currents in wires, disrupting power lines and causing widespread blackouts.

Solar storms can interfere with communications between ground controllers, satellites and airplane pilots flying near Earth’s poles. Radio noise from the storms also can disrupt cell phone service.

SDO will send 1.5 terabytes of data back to Earth each day, which is equivalent to a daily download of half a million songs onto an MP3 player. The observatory carries three state-of the-art instruments for conducting solar research.

SDO is the first mission of NASA’s Living with a Star Program, or LWS, and the crown jewel in a fleet of NASA missions that study our Sun and space environment. The goal of LWS is to develop the scientific understanding necessary to address those aspects of the connected Sun-Earth system that directly affect our lives and society.

Adapted from information issued by NASA / SDO / AIA.

Filed Under: Featured storiesNews ArchiveSpaceflight

Tags:

RSSComments (0)

Trackback URL

Comments are closed.